3.3 Balanced Search Trees

bottom
2 3 three
transformatlons
new x

l'"k order ‘DZ-HO:ES
Tr@réosd <ev
ba'a"ce » 2-3 search trees

réf,ab,:iﬂ;t re e » red-black BSTs

i
wdeS@arch, ... » B-trees

middle

“links

use

root

BSTo

=
()

Algorithms, 4" Edition Robert Sedgewick and Kevin Wayne Copyright © 2002-2010 January 30, 2011 12:57:44 PM

Symbol table review

guarantee average case :
ordered operations

implementation . ,
, _ . iteration? on keys
search | insert delete | search hit insert delete

ial h
sequential searc N N N/2 N N/2 no equals ()
(linked list)
SIELR7 SEENE Ilg N N N lg N N/2 N/2 es compareTo ()
(ordered array) 9 g 4 o
BST N N N 1.391gN 1.391gN ? yes compareTo ()
goal log N log N log N log N log N log N yes compareTo ()

Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

\ introduced to the world
in COS 226, Fall 2007

» 2-3 search trees

2-3 tree

Allow 1 or 2 keys per node.
e 2-node: one key, two children.
e 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

between E and J \ }’ll/lll Zlnk

Search ina 2-3 tree

» Compare search key against keys in node.
 Find interval containing search key.
* Follow associated link (recursively).

successful search for H unsuccessful search for B

H is less than M so B is less than M so

look to the left ™\ m look to the left G m

H is between E and L so B is less than E

look in the middle so look to the left
N
CHOFORS ORO

f

found H so return value (search hit) B is between A and C so look in the middle
link is null so B is not in the tree (search miss)

»

Insertion ina 2-3 tree

Case 1. Insert into a 2-node at bottom.
» Search for key, as usual.
* Replace 2-node with 3-node.

inserting K

(L)
™

search for K ends here

N replace 2-node with
new 3-node containing K

Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create temporary 4-node.
* Move middle key in 4-node into parent.

/

why middle key?))
inserting Z

(M)

search for Z ends
e / at this 3-node

replace 3-node with
temporary 4-node
/containing Z

replace 2-node
with new 3-node

~ containing

middle key

S @
N/

split 4-node into two 2-nodes
pass middle key to parent

Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create temporary 4-node.

* Move middle key in 4-node into parent.
* Repeat up the tree, as necessary.

inserting D

search for D ends

at this 3-node \

add new key D to 3-node
to make temporary 4-node

ACD

()

add middle key C to 3-node
to make temporary 4-node

N\

OR0
N/

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node ~.

o Q@

5/

split 4-node into two 2-nodes
pass middle key to parent

Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create temporary 4-node.
* Move middle key in 4-node into parent.
» Repeat up the tree, as necessary.

* If you reach the root and it's a 4-node, split it info three 2-nodes.

inserting D add middle key C to 3-node
to make t 4-nod
search for D ends o make temporary 4-node
at this 3-node E J
\ SED
& @
add new key D to 3-node it 4 ;\ / 2-nod
to make temporary 4-node spit 4-node into two £-nodes
pass middle key to parent
split 4-node into
ACD three 2-nodes .
increasing tree
height by 1

Remark. Splitting the root increases height by 1.

2-3 tree construction trace

Standard indexing client.

insert S

E

p) o

[>)
@

e@a
>

© (™)
3

S

10

2-3 tree construction trace

The same keys inserted in ascending order.

insert A @
:
. (C)
(A) (E)
' (©
L
(L)
.

11

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

b cd
less between\ /between\ /between\ /between greater
than a aandb b and c candd dande than e
a C e

(b) ©

less between\ /between\ /between\ /between greater
than a aandb b and c candd) | dande than e

12

Global properties ina 2-3 free

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

root parent is a 3-node

. (b)
e G (b d o
——
(a) (<)
parentis a 2-node
middle (@ <)

l

b cd (b) (d)

l

left . CI:)
(ab c) (a) ()
(a)

(b)

(d)
abc
right ~ (a) ac right (@ b) (3 b d)
——
(d) (c)

(e)

13

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
 Worst case:
e Best case:

14

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
e Worst case: IgN. [all 2-nodes]
e Best case: logs N =.6311g N. [all 3-nodes]

e Between 12 and 20 for a million nodes.
e Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

15

ST implementations: summary

guarantee average case :
ordered operations

implementation : :
: _ _ iteration? on keys
search | insert delete | search hit insert delete

sequential search
N N N/2 N N/2 1
(linked list) / / no equals()
e lg N N N lg N N/2 N/2 es compareTo ()
(ordered array) g g Y 5
BST N N N 1.391gN 1.391Ig N ? yes compareTo ()
2-3 tree clgN clgN clgN clgN clgN clgN yes compareTo ()

]

constants depend upon
implementation

2-3 tree: implementation?

Direct implementation is complicated, because:

* Maintaining multiple node types is cumbersome.
* Need multiple compares to move down tree.

* Need to move back up the tree to split 4-nodes.
 Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

17

» red-black BSTs

18

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3-nodes.

3-node e 'D -

less between greater greater
than a aandb than b than b

less between
than a aandb

larger key is root

red links "glue"
nodes within a 3-node

corresponding red-black tree

black links connect
2-nodes and 3-nodes

19

An equivalent definition

A BST such that:
* No node has two red links connected to it.

» Every path from root to null link has the same number of black links.
+ Red links lean left. N

"perfect black balance"

20

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red—black tree

2-3 tree

21

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster because of better balance

public Val get (Key key)
{
Node x = root;
while (x '= null)
{

int cmp = key.compareTo (x.key) ;

if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;

}

return null;

Remark. Most other ops (e.g., ceiling, selection, iteration) are also identical.

22

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =

can encode color of links in nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node

{
Key key;
Value val;
Node left, right;
boolean color; // color of parent link

private boolean isRed(Node x)

{

if (x == null) return false;

return x.color == RED;
}

null links are black

h
h.left.color e -
is RED G h.right.color

Q / is BLACK
(A, D) (C]

23

Elementary red-black BST operations

Left rotation. Orient a (femporarily) right-leaning red link to lean left.

could be right or left,

h «— red or black - X
™~ h
e AN
less greater
than E between greater less between than S
EandS than S than E EandS

private Node rotatelLeft (Node h)
{
assert (h !'= null) && isRed(h.right);
Node x = h.right;
h.right = x.left;
x.left = h;
x.color = h.color;
h.color = RED;
return x;

Invariants. Maintains symmetric order and perfect black balance.

24

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

X

h N\

< h
X\ Ve
greater) hleSS
less between than 5 than £ between greater
than E SandE SandE than S

private Node rotateRight (Node h)
{
assert (h '= null) && isRed(h.left);
Node x = h.left;
h.left = x.right;
x.right = h;
x.color = h.color;
h.color = RED;
return x;

Invariants. Maintains symmetric order and perfect black balance.

25

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

red link attaches
middle node
to parent

h - could be left
~ or right link

N
black links split

to 2-nodes

less between\ /between greater less between\ /between\ / greater
than A Aand E EandS than S than A AandE)\ EandS than S

private void flipColors (Node h)
{
assert !'isRed(h) && isRed(h.left) && isRed(h.right) ;
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

Invariants. Maintains symmetric order and perfect black balance.

26

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by
applying elementary red-black tree operations.

insert C

(E)
(A XS)
(R)

add new
node here

right link red
so rotate left

PO

27

Insertion ina LLRB tree

Warmup 1. Insert into a tfree with exactly 1 node.

left root
/

I

™ search ends
at this null link

root
o

@ red link to
new node
e ™ containing a
converts 2-node
to 3-node

right root

e
search ends
«~at this null link

e attached new node
<~ with red link

root
/

rotated left

9 ™\ to make a
legal 3-node

28

Insertion in a LLRB tree

Case 1. Insert into a 2-node at the bottom.
e Do standard BST insert; color new link red.
* If new red link is a right link, rotate left.

insert C

(E)
(A) IS
(R

add new
node here

right link red
so rotate left

I B

29

Insertion in a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

larger

@ search ends
at this

GY N nullink

attached new

@ e node with

d link
e G re

colors flipped
@ «— to black

smaller

N search ends
at this null link

(c)
(b)
attached
e ™ noéleewilzzw

red link

tated
(bY . right
(@) (o)

colors flipped
@ «— to black

(@l o)

between

search ends
at this null link

e

attached new

node with
Q red link

O

()

rotated left

rotated

" right
()

colors flipped
@ «— to black

()
()

8;

30

Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.
e Do standard BST insert; color new link red.
e Rotate to balance the 4-node (if needed).

* Flip colors to pass red link up one level.

* Rotate to make lean left (if needed).

inserting H two lefts in a row

G so rotate right

ol
LN —
& ® o

add new

node here /

both children red

so flip colors

(E)
Q) (R)
(A) (H) (S)

right link red
so rotate left

l

31

Insertion in a LLRB free: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

* Do standard BST insert; color new link red.
Rotate to balance the 4-node (if needed).

Flip colors to pass red link up one level.

Rotate to make lean left (if needed).

Repeat case 1 or case 2 up the tree (if needed).

inserting P

(R)

(E) (S)

QI

OEEOSEN

add new

node here

/ two lefts in a row
right link red so rotate right \

so rotate left
N

both children red
so flip colors

both children red
so flip colors

32

LLRB tree construction trace

Standard indexing client.

insert S

2

o8

[S)
Q)
(S)

™)

()

@

(A)

(R)
(E]
(H)

red black tree

corresponding 2-3 tree

33

LLRB tree construction trace

Standard indexing client (continued).

®
X e
®
g o
(1}
Q
b ®) ®)
OO

red black tree

corresponding 2-3 tree

34

Insertion in a LLRB free: Java implementation

Same code for both cases.
 Right child red, left child black: rotate left.

» Left child, left-left grandchild red: rotate right.

 Both children red: flip colors.

private Node put(Node h, Key key, Value val)

{

if (h == null) return new Node (key, val, RED);
int cmp = key.compareTo (h.key) ;
if (cmp < 0) h.left = put(h.left, key,
else if (cmp > 0) h.right = put(h.right, key,
else if (cmp == 0) h.val = val;
if (isRed(h.right) && '!'isRed(h.left)) h =

if (isRed(h.left) && isRed(h.left.left)) h =

if (isRed(h.left) && isRed(h.right)) flipColors (h) ; <«

r rn h; :
e ! only a few extra lines of code

to provide near-perfect balance

N\ right

rotate

h
h ggir
flip
% colors

left "
otate

val) ;
val) ;

rotateLeft(h),;, <—
rotateRight (h) ; «—

insert at bottom
(and color red)

lean left
balance 4-node
split 4-node

35

OO D O 0

255 insertions in descending order

Insertion in a LLRB tree: visualization

50 random insertions

38

Insertion in a LLRB tree: visualization

N = 255

max = 10
avg = 7.3
opt=7.0

i Mok

J l I8 I
l““ lx VOO TN L e Hl

255 random insertions

Balance in LLRB trees

Proposition. Height of tree is <2 1g N in the worst case.
Pf.

e Every path from root to null link has same number of black links.

* Never two red links in-a-row.

| t‘t t‘
QA A i ‘,ﬂ

Property. Height of tree is ~ 1.00 Ig N in typical applications.

40

ST implementations: frequency counter

comes o ee o o ® cocecames sooe o “s scomemme sam coome ¢ omacs o @ @mascme o was
20_ e o ® ooe © @I G W™ O M G0N WW WSS S T WEBER® © OO GENGE® @ EES EWHNS C SWIED © WS BO® W o
B EB e 0 @0 ©EE 00 EED S 00 ¢ CIED © CE WD 00 G CEHISEED @ WD B S@e SEDESED @
- @ oo amomune cm oo wmm =0 socmn

;-=___w— -— 139

cost
\/

* B eE @eeee %e® CEIE C000E WD @ CHE S Es 000 00 00 C0E GB 000 00 WE © CLEENED CEEES SN O DIEE O O O B ©B0eHNS ¢ BE

operations

Costs for java FrequencyCounter 8 < tale.txt using BST

20 0)

cost
x
|
[]
1]
[]
H
!
H
i
]

® amme
® Encmemmn cEBee C® BOOE ® SENED® WS ¢ COMIEEIS B 000 S0 mem D G GO WD ¢ SE SR MHD WIEE® EBES © © 00D WD B CED OB WG 50 B ® CNED @S SO WEE WS
o= e ® ® we o o o o s wom .- o emonm oame - - o we
o0 evemese - - - -e - om. - - - -
. . . .

operations

Costs for java FrequencyCounter 8 < tale.txt using RedBlackBST

41

ST implementations: summary

guarantee average case
: : ordered operations
implementation

iteration? on keys
search insert delete search hit insert delete

- .

sequential search
N N N/2 N N/2 no 1
(linked list) / / el

SHTELR7 SEETET Ig N N N Ilg N N/2 N/2 es compareTo ()

(ordered array) = = v B
BST N N N 1.391g N 1.391g N ? yes compareTo ()
2-3 tree clgN clgN clgN clgN clgN clgN yes compareTo ()
red-black BST 2IgN 2IgN 21gN 1.00IgN™ 1.00lgN"™ 1.00IgN" yes compareTo ()

* exact value of coefficient unknown but extremely close to 1

42

Why left-leaning trees?

old code (that students had to learn in the past)

private Node put (Node x, Key key, Value val, boolean sw)
{
if (x == null)
return new Node (key, value, RED) ;
int cmp = key.compareTo (x.key) ;

if (isRed(x.left) && isRed(x.right))
{
x.color = RED;
x.left.color
x.right.color

BLACK;
BLACK;

}
if (cmp < 0)
{
x.left = put(x.left, key, val, false);
if (isRed(x) && isRed(x.left) && sw)
x = rotateRight (x) ;
if (isRed(x.left) && isRed(x.left.left))
{
x = rotateRight (x) ;
x.color = BLACK; x.right.color = RED;
}
}
else if (cmp > 0)
{
x.right = put(x.right, key, val, true);
if (isRed(h) && isRed(x.right) && !sw)
x = rotateleft (x);
if (isRed(h.right) && isRed(h.right.right))
{
x = rotateleft (x);
x.color = BLACK; x.left.color = RED;

}} \\

else x.val = val;
return x;

new code (that you have to learn)

public Node put(Node h, Key key, Value val)
{
if (h == null)
return new Node (key, val, RED) ;
int cmp = kery.compareTo (h.key) ;
if (cmp < 0)
h.left = put(h.left, key, val);
else if (cmp > 0)
h.right = put(h.right, key, val);
else h.val = val;

if (isRed(h.right) && 'isRed(h.left))
h = rotateleft (h);

if (isRed(h.left) && isRed(h.left.left))
h = rotateRight (h) ;

if (isRed(h.left) && isRed(h.right))
flipColors (h) ;

return h;
) |

straightforward
(if you’ve paid attention)

Algorithms

Algorithms
INJava

extremely tricky

43

Why left-leaning red-black BSTs?

Simplified code.
 Left-leaning restriction reduces number of cases.
e Short inner loop.

Same ideas simplify implementation of other operations.
* Delete min/max. 5008

* Arbitrary delete. 1978

Improves widely-used balanced search trees.

* AVL trees, splay trees, randomized BSTs, ...

e 2-3 trees, 2-3-4 trees. 17z
e Red-black BSTs.

Bottom line. Left-leaning red-black BSTs are among the simplest balanced
BSTs to implement and among the fastest in practice.

44

War story: why red-black?

Xerox PARC innovations. [1970s]

e Alto.
e GUL.
e Ethernet.

* Smalltalk.

e InterPress.

 Laser printing.
 Bitmapped display.
 WYSIWYG text editor.

XEROX.

—

Xerox Alto

A DICHROMATIC FRAMEWORK FOR BALANCED TREES

Lco J. Guibas

Xerox Palo Alto Research Center,
Palo Alto, California, and
Carnegie-Mellon University

ABSTRACT

Tn this paper we present a mniform framework for the implementation
and study of balanced tree algorithms. We show how to imbed in this

Robert Sedgewick*

Program in Computer Science
and Brown University

Providence, R. L.

the way down towards a lcaf. As we will sce, this has a number of
significant advantages over the older methods. We shall examine a
number of variations on a common theme and exhibit full
implementations which are notable for their brevity. One
implementation is cxamined carefully, and some propertics about its

45

War story: red-black BSTs

Telephone company contracted with database provider to build real-time
database to store customer information.

Database implementation.
* Red-black BST search and insert; Hibbard deletion.
» Exceeding height limit of 80 triggered error-recovery process.

allows for up to 249 keys

Extended telephone service outage.
* Main cause = height bounded exceeded!
» Telephone company sues database provider.

* Legal testimony:

“ If implemented properly, the height of a red-black BST

with N keys is at most 2 [g N. ” — expert witness

i

46

47

File system model

Page. Contiguous block of data (e.g., a file or 4096-byte chunk).
Probe. First access to a page (e.g., from disk fo memory).

slow fast

Property. Time required for a probe is much larger than time to access
data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

48

B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.
» At least 2 key-link pairs at root.

))) choose M as large as possible so
e At least M /2 key-lmk pairs in other nodes. that M links fit in a page, e.g., M = 1024
» External nodes contain client keys.

 Internal nodes contain copies of keys to guide search.

L2 node

sentinel ke)’ / \mt@rnﬂl 3-node
each red key is a copy __

of min key in subtree > KIQ|U

external
3- node / \\ external 5- n0d€ (fV Nﬂllé@ node

IIDEF [[H I] IIKMNOP [[Q RIT [{U W XY

client keys (black) all nodes except the root are 3-, 4- or 5-nodes
are in external nodes

Anatomy of a B-tree set (M = 6)

49

Searching in a B-tree

e Start at root.
* Find interval for search key and take corresponding link.
e Search terminates in external node.

searching for E

follow this link because

E is between * any

.':DH

follow this link because

_—E isbetween D and H

ID EF |
search for E in v

this external node

Searching in a B-tree set (M = 6)

50

Insertion in a B-tree

» Search for new key.
e Insert at bottom.
 Split nodes with M key-link pairs on the way up the tree.

inserting A *THIKIQ|U
[* B CEFL [HTI?J [[KMNOP J[QRT [LUlW X
[*/A B CEF|
new key (A) causes *CIHIK|Q U] ~—— 1mew key (C) causes
overflow and split / overflow and split
[* AB [[CEF |

/ \\

root split causes — ,[xiqQlu
a new root to be created

/\\ N\ T

Inserting a new key into a B-tree set

Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys
requires between log -1 N and log» N probes.

Pf. All internal nodes (besides root) have between M /2 and M - 1 links.
M=1024; N =62 billion

In practice. Number of probes is at most 4. < logmz N < 4

Optimization. Always keep root page in memory.

52

Building a large B free

full page, about to split

il
i

external nodes
(line segment of length proportional

m
E%%Eggii______
o

I

i i

L T
it i

m i
e L T
s

i L i i
ity
s A __

to number of keys in that node)

i i
e L
T e :
i
e

g
il

I
il

53

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.

e C++ STL: map, multimap, multiset.

* Linux kernel: completely fair scheduler, 1inux/rbtree.n.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
e Windows: HPFS.

* Mac: HFS, HFS+.

e Linux: ReiserFS, XFS, Ext3FS, JFS.

* Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

54

Red-black BSTs in the wild

O |
THUY L. Y

Common sense. Sixth sense.
Together they're the
FBl's newest team.

55

Red-black BSTs in the wild

ACT FOUR
FADE IN:
48 INT. FBI HQ -~ NICHT
Antonio is at THE COMPUTER as Jess explains herself to Nicole

and Pollock. The CONFERENCE TABLE is covered with OPEN
REFERENCE BOOKS, TOURIST GUIDES, MAPS and REAMS OF PRINTOUTS.

JESS
It was the red door again.

POLLOCK
I thought the red door was the storage
container.

JESS
But it wasn't red anymore. It was
black.

ANTONIO
So red turning to black means...
what?

POLLOCK
Budget deficits? Red ink, black
ink?

NICOLE

Yes. I'm sure that's what it is.
But maybe we should come up with a
couple other options, just in case.

Antonio refers to his COMPUTER SCREEN, which is filled with
mathematical equations.

ANTONIO
It could be an algorithm from a binary
search tree. A red-black tree tracks
every simple path from a node to a
descendant leaf with the same number
of black nodes.

JESS
Does that help you with girls?

48

56

