## 2.3 Quicksort

| partitioning<br>loop program<br>elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| elements<br>performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| running                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| algorithm size of the size of  |
| values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| disting the second seco |
| index time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| and the second s |
| right first ar Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| log right first a recursive of a used run of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Quicksort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e subarrays a partition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

- quicksort
- selection
- duplicate keys
- system sorts

#### Two classic sorting algorithms

#### Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of 20<sup>th</sup> century in science and engineering.

#### Mergesort.

← last lecture

- Java sort for objects.
- Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...

#### Quicksort.

this lecture

- Java sort for primitive types.
- C qsort, Unix, Visual C++, Python, Matlab, Chrome JavaScript, ...

▶ quicksort
▶ selection

#### Quicksort

#### Basic plan.

- Shuffle the array.
- Partition so that, for some j
  - element a[j] is in place
  - no larger element to the left of j
  - no smaller element to the right of j
- Sort each piece recursively.



Sir Charles Antony Richard Hoare 1980 Turing Award

| input                   | Q                    | U | Ι      | С    | Κ      | S      | 0 | R      | Т      | Е      | Х      | А | Μ | Ρ | L | Е |
|-------------------------|----------------------|---|--------|------|--------|--------|---|--------|--------|--------|--------|---|---|---|---|---|
| shuffle                 | K -                  | R | А      | Т    | Е      | L      | Е | Ρ      | U      | Ι      | М      | Q | С | Х | 0 | S |
|                         | partitioning element |   |        |      |        |        |   |        |        |        |        |   |   |   |   |   |
| partition               | Е                    | С | А      | Ι    | Е      | ĸ      | Ĺ | Ρ      | U      | Т      | М      | Q | R | Х | 0 | S |
|                         |                      |   |        |      |        |        |   |        |        |        |        |   |   |   |   |   |
|                         |                      |   | ×      | ∖ no | t gre  | ater   |   |        | п      | ot les | ss /   |   |   |   |   |   |
| sort left               | A                    | С |        |      |        |        |   |        |        |        |        | Q | R | Х | 0 | S |
| sort left<br>sort right |                      |   | Е      | Е    | Ι      | К      | L | Ρ      | U      | Т      | M      |   |   |   |   |   |
|                         | А                    | С | E<br>E | E    | I<br>I | K<br>K | L | P<br>M | U<br>0 | ⊤<br>P | M<br>Q |   | S | Т | U | Х |

#### Quicksort partitioning

#### Basic plan.

- Scan i from left for an item that belongs on the right.
- Scan j from right for item item that belongs on the left.
- Exchange a[i] and a[j].
- Repeat until pointers cross.

|                                                                    | V |    |            |   |     | a[i] |   |   |   |   |   |   |    |    |     |    |    |    |
|--------------------------------------------------------------------|---|----|------------|---|-----|------|---|---|---|---|---|---|----|----|-----|----|----|----|
|                                                                    | i | j  | $\sqrt{0}$ | 1 | 2   | 3    | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12  | 13 | 14 | 15 |
| initial values                                                     | 0 | 16 | к          | R | А   | Т    | Е | L | Е | Ρ | U | Ι | М  | Q  | С   | Х  | 0  | S  |
| scan left, scan right                                              | 1 | 12 | К          | R | _A_ | T    | E | L | E | Р | U | I | M  | Q  | - C | Х  | 0  | S  |
| exchange                                                           | 1 | 12 | К          | С | Â   | T    | E | L | E | Р | U | Ι | M  | Q  | R   | Х  | 0  | S  |
| scan left, scan right                                              | 3 | 9  | К          | С | A   | T    | E | L | E | Р |   | Ī | М  | Q  | R   | Х  | 0  | S  |
| exchange                                                           | 3 | 9  | К          | С | А   | I    | E | L | E | Р | U | T | M  | Q  | R   | Х  | 0  | S  |
| scan left, scan right                                              | 5 | 6  | К          | С | А   | Ι    | E | L | E | Ρ | U | Т | M  | Q  | R   | Х  | 0  | S  |
| exchange                                                           | 5 | 6  | К          | С | А   | Ι    | Е | E | L | Ρ | U | Т | M  | Q  | R   | Х  | 0  | S  |
| scan left, scan right                                              | 6 | 5  | К-         | C | A   | I    | E | E | L | Р | U | Т | M  | Q  | R   | Х  | 0  | S  |
| final exchange                                                     | 6 | 5  | E*         | C | А   | I    | E | K | L | Р | U | Т | M  | Q  | R   | Х  | 0  | S  |
| result                                                             | 6 | 5  | Ε          | С | А   | Ι    | Е | K | L | Ρ | U | Т | М  | Q  | R   | Х  | 0  | S  |
| Partitioning trace (array contents before and after each exchange) |   |    |            |   |     |      |   |   |   |   |   |   |    |    |     |    |    |    |

```
private static int partition(Comparable[] a, int lo, int hi)
{
   int i = lo, j = hi+1;
   while (true)
      while (less(a[++i], a[lo]))
                                           find item on left to swap
          if (i == hi) break;
      while (less(a[lo], a[--j]))
                                          find item on right to swap
          if (j == lo) break;
                                             check if pointers cross
      if (i >= j) break;
      exch(a, i, j);
                                                           swap
   }
                                         swap with partitioning item
   exch(a, lo, j);
   return j;
                  return index of item now known to be in place
}
```



#### Quicksort: Java implementation

```
public class Quick
{
   private static int partition(Comparable[] a, int lo, int hi)
   { /* see previous slide */ }
   public static void sort(Comparable[] a)
      StdRandom.shuffle(a);
                                                                         shuffle needed for
      sort(a, 0, a.length - 1);
                                                                       performance guarantee
   }
                                                                            (stay tuned)
   private static void sort(Comparable[] a, int lo, int hi)
      if (hi <= lo) return;</pre>
      int j = partition(a, lo, hi);
      sort(a, lo, j-1);
      sort(a, j+1, hi);
  }
```

#### Quicksort trace



#### Quicksort animation

#### 50 random elements



http://www.sorting-algorithms.com/quick-sort

Partitioning in-place. Using an extra array makes partitioning easier (and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier than it might seem.

Staying in bounds. The (j == 10) test is redundant (why?), but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better to stop on elements equal to the partitioning element.

#### Quicksort: empirical analysis

#### Running time estimates:

- Home PC executes 10<sup>8</sup> compares/second.
- Supercomputer executes 10<sup>12</sup> compares/second.

|          | ins      | ertion sort ( | N²)       | mer      | gesort (N lo | g N)    | quicksort (N log N) |         |         |  |  |  |
|----------|----------|---------------|-----------|----------|--------------|---------|---------------------|---------|---------|--|--|--|
| computer | thousand | million       | billion   | thousand | million      | billion | thousand            | million | billion |  |  |  |
| home     | instant  | 2.8 hours     | 317 years | instant  | 1 second     | 18 min  | instant             | 0.6 sec | 12 min  |  |  |  |
| super    | instant  | 1 second      | 1 week    | instant  | instant      | instant | instant             | instant | instant |  |  |  |

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

#### Quicksort: best-case analysis

## Best case. Number of compares is $\sim N \lg N$ .

|        |         |        |   |   |   |   |   |   |   | a | [] |   |    |    |    |    |    |
|--------|---------|--------|---|---|---|---|---|---|---|---|----|---|----|----|----|----|----|
| lo     | j       | hi     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9 | 10 | 11 | 12 | 13 | 14 |
| initia | al valu | ies    | Н | Α | С | В | F | Ε | G | D | L  | I | К  | J  | Ν  | М  | 0  |
| rand   | om sł   | nuffle | н | Α | С | В | F | Е | G | D | L  | I | К  | J  | Ν  | М  | 0  |
| 0      | 7       | 14     | D | Α | С | В | F | Ε | G | Н | L  | I | К  | J  | Ν  | М  | 0  |
| 0      | 3       | 6      | В | А | С | D | F | Е | G | Н | L  |   | К  | J  | Ν  | М  | 0  |
| 0      | 1       | 2      | А | В | С | D | F | Е | G | Н | L  |   | К  | J  | Ν  | M  | 0  |
| 0      |         | 0      | Α | В | С | D | F | Е | G | Н | L  |   | К  | J  | Ν  | М  | 0  |
| 2      |         | 2      | А | В | С | D | F | Е | G | Н | L  |   | К  | J  | Ν  | M  | 0  |
| 4      | 5       | 6      | А | В | С | D | Е | F | G | Н | L  |   | К  | J  | Ν  | M  | 0  |
| 4      |         | 4      | А | В | С | D | Е | F | G | Н | L  |   | К  | J  | Ν  | M  | 0  |
| 6      |         | 6      | А | В | С | D | E | F | G | Н | L  |   | К  | J  | Ν  | M  | 0  |
| 8      | 11      | 14     | А | В | С | D | E | F | G | Н | J  | I | К  | L  | Ν  | М  | 0  |
| 8      | 9       | 10     | А | В | С | D | E | F | G | Н | I  | J | К  | L  | Ν  | M  | 0  |
| 8      |         | 8      | А | В | С | D | E | F | G | Н | I  | J | К  | L  | Ν  | M  | 0  |
| 10     |         | 10     | А | В | С | D | E | F | G | Н |    | J | К  | L  | Ν  | M  | 0  |
| 12     | 13      | 14     | А | В | С | D | E | F | G | Н |    | J | К  | L  | М  | Ν  | 0  |
| 12     |         | 12     | А | В | С | D | E | F | G | Н |    | J | К  | L  | М  | Ν  | 0  |
| 14     |         | 14     | А | В | С | D | E | F | G | Н |    | J | К  | L  | Μ  | Ν  | 0  |
|        |         |        | А | В | С | D | Ε | F | G | Н | I  | J | К  | L  | М  | Ν  | 0  |

#### Quicksort: worst-case analysis

Worst case. Number of compares is  $\sim \frac{1}{2} \, N^2$  .

|        |         |        |   |   |   |   |   |   |   | a | [] |   |    |    |    |    |    |
|--------|---------|--------|---|---|---|---|---|---|---|---|----|---|----|----|----|----|----|
| lo     | j       | hi     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9 | 10 | 11 | 12 | 13 | 14 |
| initia | al valu | ies    | А | В | С | D | Ε | F | G | Н | I  | J | К  | L  | М  | Ν  | 0  |
| rand   | om sł   | nuffle | А | В | С | D | Ε | F | G | Н | I  | J | К  | L  | М  | Ν  | 0  |
| 0      | 0       | 14     | Α | В | С | D | Е | F | G | Н | I  | J | К  | L  | М  | Ν  | 0  |
| 1      | 1       | 14     | А | В | С | D | Ε | F | G | Н | I  | J | К  | L  | М  | Ν  | 0  |
| 2      | 2       | 14     | А | В | С | D | Е | F | G | Н | I  | J | К  | L  | М  | Ν  | 0  |
| 3      | 3       | 14     | А | В | С | D | Е | F | G | Н | I  | J | К  | L  | М  | Ν  | 0  |
| 4      | 4       | 14     | А | В | С | D | Е | F | G | Н | I  | J | К  | L  | М  | Ν  | 0  |
| 5      | 5       | 14     | А | В | С | D | Е | F | G | Н | I  | J | К  | L  | М  | Ν  | 0  |
| 6      | 6       | 14     | А | В | С | D | Е | F | G | Н | I  | J | К  | L  | М  | Ν  | 0  |
| 7      | 7       | 14     | А | В | С | D | E | F | G | Н | I  | J | К  | L  | М  | Ν  | 0  |
| 8      | 8       | 14     | А | В | С | D | E | F | G | Н | I  | J | К  | L  | М  | Ν  | 0  |
| 9      | 9       | 14     | А | В | С | D | E | F | G | Н |    | J | К  | L  | М  | Ν  | 0  |
| 10     | 10      | 14     | А | В | С | D | Е | F | G | Н |    | J | К  | L  | М  | Ν  | 0  |
| 11     | 11      | 14     | А | В | С | D | E | F | G | Н |    | J | К  | L  | М  | Ν  | 0  |
| 12     | 12      | 14     | А | В | С | D | Е | F | G | Н |    | J | К  | L  | М  | Ν  | 0  |
| 13     | 13      | 14     | А | В | С | D | E | F | G | Н |    | J | К  | L  | M  | Ν  | 0  |
| 14     |         | 14     | А | В | С | D | Е | F | G | Н |    | J | К  | L  | Μ  | Ν  | 0  |
|        |         |        | A | В | С | D | Ε | F | G | Η | I  | J | К  | L  | М  | Ν  | 0  |

Proposition. The average number of compares  $C_N$  to quicksort an array of N distinct keys is ~  $2N \ln N$  (and the number of exchanges is ~  $\frac{1}{3} N \ln N$ ).

Pf 1.  $C_N$  satisfies the recurrence  $C_0 = C_1 = 0$  and for  $N \ge 2$ :



• Multiply both sides by N and collect terms:

$$NC_N = N(N+1) + 2(C_0 + C_1 + \dots + C_{N-1})$$

• Subtract this from the same equation for N-1:

$$NC_N - (N-1)C_{N-1} = 2N + 2C_{N-1}$$

• Rearrange terms and divide by N(N+1):

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

• Repeatedly apply above equation:

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

$$= \frac{C_{N-2}}{N-1} + \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

$$= \frac{C_{N-3}}{N-2} + \frac{C_{N-2}}{N-1} + \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

$$= \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \dots + \frac{2}{N+1}$$

• Approximate sum by an integral:

$$C_N = 2(N+1)\left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{N+1}\right)$$
  
~  $2(N+1)\int_3^{N+1}\frac{1}{x}\,dx$ 



• Finally, the desired result:

 $C_N \sim 2(N+1) \ln N \approx 1.39 N \lg N$ 

Proposition. The average number of compares  $C_N$  to quicksort an array of N distinct keys is ~  $2N \ln N$  (and the number of exchanges is ~  $\frac{1}{3} N \ln N$ ).

Pf 2. Consider BST representation of keys 1 to N.



Proposition. The average number of compares  $C_N$  to quicksort an array of N distinct keys is ~  $2N \ln N$  (and the number of exchanges is ~  $\frac{1}{3} N \ln N$ ).

Pf 2. Consider BST representation of keys 1 to N.

- A key is compared only with its ancestors and descendants.
- Probability *i* and *j* are compared equals 2 / |j i + 1|.

3 and 6 are compared (when 3 is partition)

1 and 6 are not compared (because 3 is partition)



Proposition. The average number of compares  $C_N$  to quicksort an array of N distinct keys is ~  $2N \ln N$  (and the number of exchanges is ~  $\frac{1}{3} N \ln N$ ).

Pf 2. Consider BST representation of keys 1 to N.

- A key is compared only with its ancestors and descendants.
- Probability *i* and *j* are compared equals 2 / |j i + 1|.

• Expected number of compares = 
$$\sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{2}{j-i+1} = 2\sum_{i=1}^{N} \sum_{j=2}^{N-i+1} \frac{1}{j}$$
$$\leq 2N \sum_{j=1}^{N} \frac{1}{j}$$
all pairs i and j
$$\sim 2N \int_{x=1}^{N} \frac{1}{x} dx$$
$$= 2N \ln N$$

#### Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.

- $N + (N 1) + (N 2) + \dots + 1 \sim \frac{1}{2} N^2$ .
- More likely that your computer is struck by lightning bolt.

Average case. Number of compares is  $\sim 1.39 N \lg N$ .

- 39% more compares than mergesort.
- But faster than mergesort in practice because of less data movement.

#### Random shuffle.

- Probabilistic guarantee against worst case.
- Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array

- Is sorted or reverse sorted.
- Has many duplicates (even if randomized!)

#### Quicksort: practical improvements

#### Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Can delay insertion sort until end.

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= lo + CUTOFF - 1)
    {
        Insertion.sort(a, lo, hi);
        return;
    }
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}</pre>
```

#### Quicksort: practical improvements

#### Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Can delay insertion sort until end.

#### Median of sample.

- Best choice of pivot element = median.
- Estimate true median by taking median of sample.

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= lo) return;
    int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
    swap(a, lo, m);
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}</pre>
```

#### Quicksort: practical improvements

#### Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Can delay insertion sort until end.

#### Median of sample.

- Best choice of pivot element = median.
- Estimate true median by taking median of sample.

#### Optimize parameters.



- Median-of-3 (random) elements.
- Cutoff to insertion sort for  $\approx 10$  elements.

#### Quicksort with median-of-3 and cutoff to insertion sort: visualization

| input                              | . hulled have a start of the st |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| result of<br>first partition       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| left subarray<br>partially sorted  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| both subarrays<br>partially sorted |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| result                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### quicksort

## ▶ selection

→ duplicate keys

system sorts

#### Selection

Goal. Find the  $k^{th}$  largest element.

**Ex.** Min (k = 0), max (k = N - 1), median (k = N/2).

#### Applications.

- Order statistics.
- Find the "top k."

#### Use theory as a guide.

- Easy O(N log N) upper bound. How?
- Easy O(N) upper bound for k = 1, 2, 3. How?
- Easy  $\Omega(N)$  lower bound. Why?

#### Which is true?

- $\Omega(N \log N)$  lower bound?  $\leftarrow$  is selection as hard as sorting?

#### Quick-select

#### Partition array so that:

- Element a[j] is in place.
- No larger element to the left of j.
- No smaller element to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

```
public static Comparable select(Comparable[] a, int k)
ł
                                                               if a[k] is here
                                                                             if a[k] is here
    StdRandom.shuffle(a);
                                                                set hi to j-1
                                                                              set 10 t0 j+1
    int lo = 0, hi = a.length - 1;
    while (hi > lo)
    ł
       int j = partition(a, lo, hi);
                                                                 \leq v
                                                                        V
                                                                                \geq v
       if (j < k) lo = j + 1;
       else if (j > k) hi = j - 1;
                                                            10
                                                                                       hi
                   return a[k];
       else
    }
    return a[k];
}
```

#### Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average. Pf sketch.

- Intuitively, each partitioning step splits array approximately in half:  $N+N/2+N/4+...+1 \sim 2N$  compares.
- Formal analysis similar to quicksort analysis yields:

 $C_N = 2 N + k \ln (N/k) + (N-k) \ln (N/(N-k))$ 

Ex.  $(2 + 2 \ln 2) N$  compares to find the median.

Remark. Quick-select uses  $\sim \frac{1}{2} N^2$  compares in the worst case, but (as with quicksort) the random shuffle provides a probabilistic guarantee.

#### Theoretical context for selection

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a compare-based selection algorithm whose worst-case running time is linear.



Remark. But, constants are too high  $\Rightarrow$  not used in practice.

#### Use theory as a guide.

- Still worthwhile to seek practical linear-time (worst-case) algorithm.
- Until one is discovered, use quick-select if you don't need a full sort.

#### Generic methods

In our select() implementation, client needs a cast.



The compiler complains.



#### Q. How to fix?

#### Generic methods

Pedantic (safe) version. Compiles cleanly, no cast needed in client.



http://www.cs.princeton.edu/algs4/23quicksort/QuickPedantic.java.html

Remark. Obnoxious code needed in system sort; not in this course (for brevity).

# selectionduplicate keys

► system sorts

#### Duplicate keys

#### Often, purpose of sort is to bring records with duplicate keys together.

- Sort population by age.
- Find collinear points. <---- see Assignment 3
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

#### Typical characteristics of such applications.

- Huge array.
- Small number of key values.

Chicago 09:25:52 Chicago 09:03:13 Chicago 09:21:05 Chicago 09:19:46 Chicago 09:19:32 Chicago 09:00:00 Chicago 09:35:21 Chicago 09:00:59 Houston 09:01:10 Houston 09:00:13 Phoenix 09:37:44 Phoenix 09:00:03 Phoenix 09:14:25 Seattle 09:10:25 Seattle 09:36:14 Seattle 09:22:43 Seattle 09:10:11 Seattle 09:22:54 key

#### Duplicate keys

Mergesort with duplicate keys. Always between  $\frac{1}{2} N \lg N$  and  $N \lg N$  compares.

#### Quicksort with duplicate keys.

- Algorithm goes quadratic unless partitioning stops on equal keys!
- 1990s C user found this defect in qsort().

several textbook and system implementation also have this defect



#### Duplicate keys: the problem

Mistake. Put all keys equal to the partitioning element on one side. Consequence.  $\sim \frac{1}{2} N^2$  compares when all keys equal.

BAABABBBCCC AAAAAAAAAAAAA

Recommended. Stop scans on keys equal to the partitioning element. Consequence.  $\sim N \lg N$  compares when all keys equal.

BAABABCCBCB AAAAAAAAAAAAA

Desirable. Put all keys equal to the partitioning element in place.

#### 3-way partitioning

Goal. Partition array into 3 parts so that:

- Elements between 1t and gt equal to partition element v.
- No larger elements to left of 1t.
- No smaller elements to right of gt.





#### Dutch national flag problem. [Edsger Dijkstra]

- Conventional wisdom until mid 1990s: not worth doing.
- New approach discovered when fixing mistake in C library qsort().
- Now incorporated into qsort() and Java system sort.

#### Dijkstra 3-way partitioning algorithm

#### 3-way partitioning.

- Let v be partitioning element a [10].
- Scan i from left to right.
  - a[i] less than v: exchange a[it] with a[i] and increment both it and i
  - a[i] greater than v: exchange a[gt] with a[i] and decrement gt
  - a[i] equal to v: increment i

#### All the right properties.

- In-place.
- Not much code.
- Small overhead if no equal keys.



#### 3-way partitioning: trace



}

```
private static void sort(Comparable[] a, int lo, int hi)
{
   if (hi <= lo) return;</pre>
   int lt = lo, qt = hi;
   Comparable v = a[lo];
   int i = lo;
   while (i <= gt)
   {
      int cmp = a[i].compareTo(v);
            (cmp < 0) exch(a, lt++, i++);
      if
      else if (cmp > 0) exch(a, i, gt--);
      else
                       i++;
   }
                                          before
                                               sort(a, lo, lt - 1);
                                               1
                                               10
   sort(a, gt + 1, hi);
```





#### Duplicate keys: lower bound

Sorting lower bound. If there are *n* distinct keys and the  $i^{th}$  one occurs  $x_i$  times, any compare-based sorting algorithm must use at least



Bottom line. Randomized quicksort with 3-way partitioning reduces running time from linearithmic to linear in broad class of applications.

selectionduplicate keys

comparatorssystem sorts

### Sorting applications

# Sorting algorithms are essential in a broad variety of applications:

- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results. obvious applications
- List RSS feed in reverse chronological order.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.

. . .

- Computational biology.
- Supply chain management.
- Load balancing on a parallel computer.

# Every system needs (and has) a system sort!

problems become easy once elements are in sorted order

non-obvious applications

#### Java system sorts

### Java uses both mergesort and quicksort.

- Arrays.sort() Sorts an array of comparable or of any primitive type.
- Uses tuned quicksort for primitive types; tuned mergesort for objects.

```
import java.util.Arrays;

public class StringSort
{
    public static void main(String[] args)
    {
        String[] a = StdIn.readAll().split("\\s+");
        Arrays.sort(a);
        for (int i = 0; i < N; i++)
            StdOut.println(a[i]);
    }
}</pre>
```

Q. Why use different algorithms, depending on type?

# War story (C qsort function)

AT&T Bell Labs (1991). Allan Wilks and Rick Becker discovered that a qsort() call that should have taken a few minutes was consuming hours of CPU time.



#### At the time, almost all qsort() implementations based on those in:

- Version 7 Unix (1979): quadratic time to sort organ-pipe arrays.
- BSD Unix (1983): quadratic time to sort random arrays of 0s and 1s.



#### Engineering a system sort

### Basic algorithm = quicksort.

- Cutoff to insertion sort for small subarrays.
- Partitioning scheme: optimized 3-way partitioning.
- Partitioning element.
  - small arrays: middle element
  - medium arrays: median of 3
  - large arrays: Tukey's ninther [median of 3 medians of 3]

#### Engineering a Sort Function

JON L. BENTLEY M. DOUGLAS McILROY AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

#### SUMMARY

We recount the history of a new qsort function for a C library. Our function is clearer, faster and more robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a novel solution to Dijkstra's Dutch National Flag problem; and it swaps efficiently. Its behavior was assessed with timing and debugging testbeds, and with a program to certify performance. The design techniques apply in domains beyond sorting.

Now widely used. C, C++, Java, ....

# Achilles heel in Bentley-McIlroy implementation (Java system sort)

- Q. Based on all this research, Java's system sort is solid, right?
- A. No: a killer input.
- Overflows function call stack in Java and crashes program.
- Would take quadratic time if it didn't crash first.



more disastrous consequences in C

# Achilles heel in Bentley-McIlroy implementation (Java system sort)

# McIlroy's devious idea. [A Killer Adversary for Quicksort]

- Construct malicious input on the fly while running system quicksort, in response to the sequence of keys compared.
- Make partitioning element compare low against all keys not seen during selection of partitioning element (but don't commit to their relative order).
- Not hard to identify partitioning element.

#### Consequences.

- Confirms theoretical possibility.
- Algorithmic complexity attack: you enter linear amount of data; server performs quadratic amount of work.

Good news. Attack is not effective if sort() shuffles input array.

Q. Why do you think Arrays.sort() is deterministic?

# System sort: Which algorithm to use?

Many sorting algorithms to choose from:

#### Internal sorts.

- Insertion sort, selection sort, bubblesort, shaker sort.
- Quicksort, mergesort, heapsort, samplesort, shellsort.
- Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

External sorts. Poly-phase mergesort, cascade-merge, oscillating sort.

String/radix sorts. Distribution, MSD, LSD, 3-way string quicksort.

#### Parallel sorts.

- Bitonic sort, Batcher even-odd sort.
- Smooth sort, cube sort, column sort.
- GPUsort.

# System sort: Which algorithm to use?

# Applications have diverse attributes.

- Stable?
- Parallel?
- Deterministic?
- Keys all distinct?
- Multiple key types?
- Linked list or arrays?
- Large or small records?
- Is your array randomly ordered?
- Need guaranteed performance?

attributes 1 2 3 4 . . . . M algorithm A • • B • • • C • • D • • E • F • • • • G • • . • • • • K • • •

many more combinations of attributes than algorithms

Elementary sort may be method of choice for some combination.

Cannot cover all combinations of attributes.

- Q. Is the system sort good enough?
- A. Usually.

# Sorting summary

|             | inplace? | stable? | worst              | average            | best               | remarks                                             |  |
|-------------|----------|---------|--------------------|--------------------|--------------------|-----------------------------------------------------|--|
| selection   | х        |         | N <sup>2</sup> / 2 | N <sup>2</sup> / 2 | N <sup>2</sup> / 2 | N exchanges                                         |  |
| insertion   | х        | x       | N <sup>2</sup> / 2 | N <sup>2</sup> / 4 | Ν                  | use for small N or partially ordered                |  |
| shell       | х        |         | ?                  | ?                  | Ν                  | tight code, subquadratic                            |  |
| merge       |          | х       | N lg N             | N lg N             | N lg N             | N log N guarantee, stable                           |  |
| quick       | х        |         | N <sup>2</sup> / 2 | 2 N In N           | N lg N             | N log N probabilistic guarantee fastest in practice |  |
| 3-way quick | х        |         | N <sup>2</sup> / 2 | 2 N In N           | Ν                  | improves quicksort in presence of<br>duplicate keys |  |
| ???         | х        | х       | N lg N             | N lg N             | N lg N             | holy sorting grail                                  |  |

# Which sorting algorithm?

| lifo     | find | data | data | data | data | hash | data   |
|----------|------|------|------|------|------|------|--------|
| fifo     | fifo | fifo | fifo | exch | fifo | fifo | exch   |
| data     | data | find | find | fifo | lifo | data | fifo   |
| type     | exch | hash | hash | find | type | link | find   |
| hash     | hash | heap | heap | hash | hash | leaf | hash   |
| heap     | heap | lifo | lifo | heap | heap | heap | heap   |
| sort     | less | link | link | leaf | link | exch | leaf   |
| link     | left | list | list | left | sort | node | left   |
| list     | leaf | push | push | less | find | lifo | less   |
| push     | lifo | root | root | lifo | list | left | lifo   |
| find     | push | sort | sort | link | push | find | link   |
| root     | root | type | type | list | root | path | list   |
| leaf     | list | leaf | leaf | sort | leaf | list | next   |
| tree     | tree | left | tree | tree | null | next | node   |
| null     | null | node | null | null | path | less | null   |
| path     | path | null | path | path | tree | root | path   |
| node     | node | path | node | node | exch | sink | push   |
| left     | link | tree | left | type | left | swim | root   |
| less     | sort | exch | less | root | less | null | sink   |
| exch     | type | less | exch | push | node | sort | sort   |
| sink     | sink | next | sink | sink | next | type | swap   |
| swim     | swim | sink | swim | swim | sink | tree | swim   |
| next     | next | swap | next | next | swap | push | tree   |
| swap     | swap | swim | swap | swap | swip | swap | type   |
|          | -    |      |      | -    |      | -    |        |
| original | ?    | ?    | ?    | ?    | ?    | ?    | sorted |

- selection
- duplicate keys
- comparators
- system sorts

# application: convex hull

#### Convex hull

The convex hull of a set of N points is the smallest convex set containing all the points.



Convex hull output. Sequence of extreme points in counterclockwise order.

Non-degeneracy assumption. No three points on a line.

#### Convex hull: brute-force algorithm

Observation 1. Edges of convex hull of P connect pairs of points in P. Observation 2. Edge  $p \rightarrow q$  is on convex hull if all other points are ccw of  $\overrightarrow{pq}$ .



 $O(N^3)$  algorithm. For all pairs of points p and q:

- Compute Point.ccw(p, q, x) for all other points x.
- $p \rightarrow q$  is on hull if all values are positive.

Degeneracies. Three (or more) points on a line.

### Graham scan

- Choose point p with smallest y-coordinate (break ties by x-coordinate).
- Sort points by polar angle with respect to p.
- Consider points in order, and discard unless they would create a ccw turn.







# Graham scan: demo



http://www.cs.princeton.edu/courses/archive/fall08/cos226/demo/ah/GrahamScan.html

# Graham scan: demo



http://www.cs.princeton.edu/courses/archive/fall08/cos226/demo/ah/GrahamScan.html

Simplifying assumptions. No three points on a line; at least 3 points.

```
Stack<Point> hull = new Stack<Point>();
                                 p[0] is now point with lowest y-coordinate
Quick.sort(p, Point.BY Y);
Quick.sort(p, p[0].BY POLAR ANGLE); \leftarrow sort by polar angle with respect to p[0]
hull.push(p[0]);  definitely on hull
hull.push(p[1]);
                                        discard points that would
                                         create clockwise turn
for (int i = 2; i < N; i++) {
   Point top = hull.pop();
   while (Point.ccw(top, hull.peek(), p[i]) <= 0)</pre>
      top = hull.pop();
   hull.push(top);
```

why?

Running time.  $N \log N$  for sorting and linear for rest.