1.4 Analysis of Algorithms

- observations
- mathematical models
- order-of-growth classifications
- dependencies on inputs
- memory

Running time

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise—By what course of calculation can these results be arrived at by the machine in the shortest time?" — Charles Babbage (1864)

Cast of characters

- Programmer needs to develop a working solution.
- Client wants to solve a problem efficiently.
- Theoretician wants to understand.
- Student might play any or all of these roles someday.

Basic blocking and tackling is sometimes necessary. [this lecture]

Reasons to analyze algorithms

- Predict performance.
- Compare algorithms.
- Provide guarantees.
- Understand theoretical basis.

Primary practical reason: avoid performance bugs.

client gets poor performance because programmer did not understand performance characteristics
Some algorithmic successes

Discrete Fourier transform.
- Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics, ...
- Brute force: N^2 steps.
- FFT algorithm: $N \log N$ steps, enables new technology.

Some algorithmic successes

N-body simulation.
- Simulate gravitational interactions among N bodies.
- Brute force: N^2 steps.
- Barnes-Hut algorithm: $N \log N$ steps, enables new research.

The challenge

Q. Will my program be able to solve a large practical input?

Key insight: [Knuth 1970s] Use scientific method to understand performance.

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.
- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.
- Experiments must be reproducible.
- Hypotheses must be falsifiable.

Feature of the natural world = computer itself.
Example: 3-sum

3-sum: Given N distinct integers, how many triples sum to exactly zero?

```
% more 8ints.txt
8
30 -40 -20 -10 40 0 10 5
% java ThreeSum < 8ints.txt
4
```

Context: Deeply related to problems in computational geometry.

Measuring the running time

Q. How to time a program?
A. Manual.

```java
public class ThreeSum {
    public static int count(int[] a) {
        int N = a.length;
        int count = 0;
        for (int i = 0; i < N; i++)
            for (int j = i+1; j < N; j++)
                for (int k = j+1; k < N; k++)
                    if (a[i] + a[j] + a[k] == 0)
                        count++;
        return count;
    }
    public static void main(String[] args) {
        int[] a = StdArrayIO.readInt1D();
        StdOut.println(count(a));
    }
}
```
Q. How to time a program?
A. Automatic.

```java
public class Stopwatch {
    private final long start = System.currentTimeMillis();
    public double elapsedTime() {
        long now = System.currentTimeMillis();
        return (now - start) / 1000.0;
    }
}
```

Run the program for various input sizes and measure running time.

<table>
<thead>
<tr>
<th>N</th>
<th>time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>0.0</td>
</tr>
<tr>
<td>1,000</td>
<td>0.1</td>
</tr>
<tr>
<td>2,000</td>
<td>0.8</td>
</tr>
<tr>
<td>4,000</td>
<td>6.4</td>
</tr>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
<tr>
<td>16,000</td>
<td>?</td>
</tr>
</tbody>
</table>

Data analysis

Standard plot. Plot running time $T(N)$ vs. input size N.

```
```
Data analysis

Log-log plot. Plot running time vs. input size N using log-log scale.

Regression. Fit straight line through data points: $a N^b$, where $a = 2^c$.

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Prediction and validation (experimental)

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Predictions.
- 51.0 seconds for $N = 8,000$.
- 408.1 seconds for $N = 16,000$.

Observations.

<table>
<thead>
<tr>
<th>N</th>
<th>time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
<tr>
<td>8,000</td>
<td>51.0</td>
</tr>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
<tr>
<td>16,000</td>
<td>410.8</td>
</tr>
</tbody>
</table>

Good news. Much easier and cheaper than other sciences.

Experimental algorithmics

System independent effects.
- Algorithm.
- Input data.

Determines exponent b in power law

System dependent effects.
- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other applications, ...

Helps determines constant a in power law

Bad news. Difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.

e.g., can run huge number of experiments
Mathematical models for running time

Total running time: sum of cost \times frequency for all operations.
• Need to analyze program to determine set of operations.
• Cost depends on machine, compiler.
• Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Cost of basic operations

<table>
<thead>
<tr>
<th>operation</th>
<th>example</th>
<th>nanoseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer add</td>
<td>a + b</td>
<td>2.1</td>
</tr>
<tr>
<td>integer multiply</td>
<td>a \times b</td>
<td>2.4</td>
</tr>
<tr>
<td>integer divide</td>
<td>a \div b</td>
<td>5.4</td>
</tr>
<tr>
<td>floating-point add</td>
<td>a + b</td>
<td>4.6</td>
</tr>
<tr>
<td>floating-point mul</td>
<td>a \times b</td>
<td>4.2</td>
</tr>
<tr>
<td>floating-point div</td>
<td>a \div b</td>
<td>13.5</td>
</tr>
<tr>
<td>sine</td>
<td>Math.sin(\theta)</td>
<td>91.3</td>
</tr>
<tr>
<td>arctangent</td>
<td>Math.atan2(y, x)</td>
<td>129.0</td>
</tr>
</tbody>
</table>

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Example: 1-sum

Q. How many instructions as a function of input size \(N \)?

```java
int count = 0;
for (int i = 0; i < N; i++)
    if (a[i] == 0)
        count++;
```

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable declaration</td>
<td>2</td>
</tr>
<tr>
<td>assignment statement</td>
<td>2</td>
</tr>
<tr>
<td>less than compare</td>
<td>N + 1</td>
</tr>
<tr>
<td>equal to compare</td>
<td>N</td>
</tr>
<tr>
<td>array access</td>
<td>N</td>
</tr>
<tr>
<td>increment</td>
<td>N to 2N</td>
</tr>
</tbody>
</table>

Novice mistake. Abusive string concatenation.
Example: 2-sum

Q. How many instructions as a function of input size N?

```
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
    if (a[i] + a[j] == 0)
      count++;
```

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable declaration</td>
<td>$N + 2$</td>
</tr>
<tr>
<td>assignment statement</td>
<td>$N + 2$</td>
</tr>
<tr>
<td>less than compare</td>
<td>$\frac{1}{2} (N + 1)(N + 2)$</td>
</tr>
<tr>
<td>equal to compare</td>
<td>$\frac{1}{2} N(N - 1)$</td>
</tr>
<tr>
<td>array access</td>
<td>$N(N - 1)$</td>
</tr>
<tr>
<td>increment</td>
<td>N to $2N$</td>
</tr>
</tbody>
</table>

Simplification 1: cost model

Cost model. Use some basic operation as a proxy for running time.

```
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
    if (a[i] + a[j] == 0)
      count++;
```

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable declaration</td>
<td>$N + 2$</td>
</tr>
<tr>
<td>assignment statement</td>
<td>$N + 2$</td>
</tr>
<tr>
<td>less than compare</td>
<td>$\frac{1}{2} (N + 1)(N + 2)$</td>
</tr>
<tr>
<td>equal to compare</td>
<td>$\frac{1}{2} N(N - 1)$</td>
</tr>
<tr>
<td>array access</td>
<td>$N(N - 1)$</td>
</tr>
<tr>
<td>increment</td>
<td>N to $2N$</td>
</tr>
</tbody>
</table>

tedious to count exactly

Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
 - when N is large, terms are negligible
 - when N is small, we don’t care

Ex 1. $\frac{1}{6} N^3 + 20N + 16 \sim \frac{1}{6} N^3$
Ex 2. $\frac{1}{6} N^3 + 100N^{4/3} + 56 \sim \frac{1}{6} N^3$
Ex 3. $\frac{1}{6} N^3 - \frac{1}{2} N^2 + \frac{1}{3} N \sim \frac{1}{6} N^3$

discard lower-order terms (e.g., $N = 1000$: 500 thousand vs. 160 million)

Technical definition. $f(N) \sim g(N)$ means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$
Q. Approximately how many array accesses as a function of input size N?

A. $\sim N^2$ array accesses.

Bottom line. Use cost model and tilde notation to simplify frequency counts.

Example: 2-sum

```
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
    if (a[i] + a[j] == 0)
      count++;
```

```
\sum_{i=1}^{N} i \sim \int_{x=1}^{N} x \, dx \sim \frac{1}{2} N^2
```

Example: 3-sum

```
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
    for (int k = j+1; k < N; k++)
      if (a[i] + a[j] + a[k] == 0)
        count++;
```

```
\binom{N}{3} = \frac{N(N-1)(N-2)}{6} \sim \frac{1}{6} N^3
```

Estimating a discrete sum

Q. How to estimate a discrete sum?

A2. Replace the sum with an integral, and use calculus!

Ex 1. $1 + 2 + \ldots + N$.

```
\sum_{i=1}^{N} i \sim \int_{x=1}^{N} x \, dx \sim \frac{1}{2} N^2
```

Ex 2. $1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{N}$.

```
\sum_{i=1}^{N} \frac{1}{i} \sim \int_{x=1}^{N} \frac{1}{x} \, dx = \ln N
```

Ex 3. 3-sum triple loop.

```
\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=j+1}^{N} 1 \sim \int_{x=1}^{N} \int_{y=x}^{N} \int_{z=y}^{N} dz \, dy \, dx \sim \frac{1}{6} N^3
```

Bottom line. We use approximate models in this course: $T(N) \sim c N^3$.

Mathematical models for running time

In principle, accurate mathematical models are available.

In practice,

- Formulas can be complicated.
- Advanced mathematics might be required.
- Exact models best left for experts.

```
T_N = c_1 A + c_2 B + c_3 C + c_4 D + c_5 E
```

- $A =$ array access
- $B =$ integer add
- $C =$ integer compare
- $D =$ increment
- $E =$ variable assignment

Costs (depend on machine, compiler)

Frequencies (depend on algorithm, input)
A reasonable model

The running time of your program is \(\sim a N^b \lg N^c \)

- Specific models of this form are known for many algorithms (stay tuned).
- General laws of this form are known in many circumstances.

(Interested? Take courses in combinatorics and complex analysis)

Notes

- The existence of the constant \(a \) is more significant than its value.
- We often drop the constant and refer to the order of growth.
- The small set of functions
 \(1, \log N, N, N \log N, N^2, \) and \(N^3 \)
suffices to describe order of growth of running time of typical algorithms.
- Some algorithms take exponential \((\sim a N^k) \) time (we consider such algorithms in the last few lectures)

Computing the constants (easy way)

Run the program!

Hypothesis: \(T(N) \sim a N^b \)

1. Implement the program
2. Compute \(T(N_0) \) and \(T(2N_0) \) by running it
3. Calculate \(b \) as follows:
 \[
 \frac{T(2N_0)}{T(N_0)} \sim \frac{a(2N_0)^b}{aN_0^b} = 2^b
 \]
 \[
 \lg(T(2N_0)/T(N_0)) \rightarrow b \text{ as } N_0 \text{ grows}
 \]
 \[
 b = 3
 \]
4. Calculate \(a \) as follows:
 \[
 \frac{T(N_0)}{N_0^b} \rightarrow a \text{ as } N_0 \text{ grows}
 \]
 \[
 a = 51.1/8000 = 9.98 \times 10^{-11}
 \]

Computing the constants (the hard way)

Knuth showed that it is possible in principle to precisely predict running time

- develop a mathematical model for the frequency of execution of each instruction in the program
- determine the time required to execute each instruction
- multiply and sum

Hypothesis: \(T(N) \sim a N^b \)

Don’t bother computing the constants!

Hypothesis: \(T(N) \sim a N^b \)

1. Implement the program
2. Run it for \(N_0, 2N_0, 4N_0, 8N_0, \ldots \)
3. Ratio of running times approaches \(2^b \)
 \[
 \frac{T(2N_0)}{T(N_0)} \sim \frac{a(2N_0)^b}{aN_0^b} = 2^b
 \]
4. Multiply by ratio \(2^b \) to predict next value
 \[
 a = 51.1/8000 = 9.98 \times 10^{-11}
 \]
 \[
 b = 3
 \]

Predicting performance (the easy way)

Plenty of caveats, but provides a basis for predicting program performance
War story (from COS 126)

Q. How long does this program take as a function of N?

```java
String s = StdIn.readString();
int N = s.length();
...
for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++)
        distance[i][j] = ...
...
```

<table>
<thead>
<tr>
<th>N</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>0.11</td>
</tr>
<tr>
<td>2,000</td>
<td>0.35</td>
</tr>
<tr>
<td>4,000</td>
<td>1.6</td>
</tr>
<tr>
<td>8,000</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Jenny $\sim c_1 N^2$ seconds

Kenny $\sim c_2 N$ seconds

Good news: the small set of functions $1, \log N, N, N \log N, N^2, N^3, \text{and } 2^N$ suffices to describe order of growth of the running time of typical algorithms.

<table>
<thead>
<tr>
<th>growth rate</th>
<th>name</th>
<th>typical code framework</th>
<th>description</th>
<th>example</th>
<th>$T(2N)/T(N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>constant</td>
<td>$a = b + c$;</td>
<td>statement</td>
<td>add two numbers</td>
<td>1</td>
</tr>
</tbody>
</table>
| $\log N$ | logarithmic | while ($N > 1$) {
| | | $N = N/2$; } | divide in half | binary search | ~ 1 |
| N | linear | for (int $i = 0$; $i < N$; $i++$) {
| | | \ldots } | loop | find the maximum | 2 |
| $N \log N$ | linearithmic | [see mergesort lecture] | divide and conquer | mergesort | ~ 2 |
| N^2 | quadratic | for (int $i = 0$; $i < N$; $i++$)
| | | for (int $j = 0$; $j < N$; $j++$) {
| | | \ldots } | double loop | check all pairs | 4 |
| N^3 | cubic | for (int $i = 0$; $i < N$; $i++$)
| | | for (int $j = 0$; $j < N$; $j++$)
| | | for (int $k = 0$; $k < N$; $k++$) {
| | | \ldots } | triple loop | check all triples | 8 |
| 2^N | exponential | [see combinatorial search lecture] | exhaustive search | check all subsets | $T(N)$ |
Practical implications of order-of-growth

<table>
<thead>
<tr>
<th>growth rate</th>
<th>problem size solvable in minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1970s</td>
</tr>
<tr>
<td>log N</td>
<td>any</td>
</tr>
<tr>
<td>N</td>
<td>millions</td>
</tr>
<tr>
<td>N log N</td>
<td>hundreds of thousands</td>
</tr>
<tr>
<td>N²</td>
<td>hundreds</td>
</tr>
<tr>
<td>N³</td>
<td>hundred</td>
</tr>
<tr>
<td>2ⁿ</td>
<td>20</td>
</tr>
</tbody>
</table>

Bottom line. Need linear or linearithmic alg to keep pace with Moore’s law.

Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

Successful search. Binary search for 33.

<table>
<thead>
<tr>
<th>6</th>
<th>13</th>
<th>14</th>
<th>25</th>
<th>33</th>
<th>43</th>
<th>51</th>
<th>53</th>
<th>64</th>
<th>72</th>
<th>84</th>
<th>93</th>
<th>95</th>
<th>96</th>
<th>97</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

↑ lo ↑ mid ↑ hi

Goal. Given a sorted array and a key, find index of the key in the array?

Successful search. Binary search for 33.

<table>
<thead>
<tr>
<th>6</th>
<th>13</th>
<th>14</th>
<th>25</th>
<th>33</th>
<th>43</th>
<th>51</th>
<th>53</th>
<th>64</th>
<th>72</th>
<th>84</th>
<th>93</th>
<th>95</th>
<th>96</th>
<th>97</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

↑ lo ↑ mid ↑ hi
Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

Successful search. Binary search for 33.

```
6 13 14 25 33 43 51 53 64 72 84 93 95 96 97
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
```

Invariant. If key appears in the array a[], then a[lo] ≤ key ≤ a[hi].

```
public static int binarySearch(int[] a, int key) {
    int lo = 0, hi = a.length-1;
    while (lo <= hi) {
        int mid = lo + (hi - lo) / 2;
        if      (key < a[mid]) hi = mid - 1;
        else if (key > a[mid]) lo = mid + 1;
        else return mid;
    }
    return -1;
}
```

Binary search: mathematical analysis

Proposition. Binary search uses at most 1 + lg N compares to search in a sorted array of size N.

Def. T(N) = # compares to binary search in a sorted subarray of size N.

Binary search recurrence. \(T(N) \leq T(N/2) + 1 \) for \(N > 1 \), with \(T(1) = 1 \).

Pf sketch.

\[
\begin{align*}
T(N) & \leq T(N/2) + 1 \\
& \leq T(N/4) + 1 + 1 \\
& \leq T(N/8) + 1 + 1 + 1 \\
& \ldots \\
& \leq T(N/N) + 1 + 1 + \ldots + 1 \\
& = 1 + \log N
\end{align*}
\]

given

apply recurrence to first term

apply recurrence to first term

stop applying, \(T(1) = 1 \)

An \(N^2 \log N \) algorithm for 3-sum

Step 1. Sort the \(N \) numbers.

Step 2. For each pair of numbers \(a[i] \) and \(a[j] \), binary search for \(-a[i] + a[j]\).

Analysis. Order of growth is \(N^2 \log N \).

* Step 1: \(N^2 \) with insertion sort.
* Step 2: \(N^2 \log N \) with binary search.

An N^2 log N algorithm for 3-sum

Step 1. Sort the \(N \) numbers.

Step 2. For each pair of numbers \(a[i] \) and \(a[j] \), binary search for \(-a[i] + a[j]\).

Analysis. Order of growth is \(N^2 \log N \).

* Step 1: \(N^2 \) with insertion sort.
* Step 2: \(N^2 \log N \) with binary search.
Comparing programs

Hypothesis. The $N^2 \log N$ three-sum algorithm is significantly faster in practice than the brute-force N^3 one.

![Table of performance comparisons](ThreeSum.java)

Bottom line. Typically, better order of growth \Rightarrow faster in practice.

Types of analyses

Best case. Lower bound on cost.
- Determined by “easiest” input.
- Provides a goal for all inputs.

Worst case. Upper bound on cost.
- Determined by “most difficult” input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.
- Need a model for “random” input.
- Provides a way to predict performance.

Ex 1. Array accesses for brute-force 3 sum.
- Best: $\sim \frac{1}{2} N^3$
- Average: $\sim \frac{1}{2} N^3$
- Worst: $\sim \frac{1}{2} N^3$

Ex 2. Compares for binary search.
- Best: ~ 1
- Average: $\sim \log N$
- Worst: $\sim \log N$

Observations
- Mathematical models
- Order-of-growth classifications
- Dependencies on inputs
- Memory
Commonly-used notations

<table>
<thead>
<tr>
<th>notation</th>
<th>provides</th>
<th>example</th>
<th>shorthand for</th>
<th>used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilde</td>
<td>leading term</td>
<td>~ 10 N²</td>
<td>10 N², 10 N² + 2 N log N, 10 N² + 2 N + 37</td>
<td>provide approximate model</td>
</tr>
<tr>
<td>Big Theta</td>
<td>asymptotic growth rate</td>
<td>Θ(N²)</td>
<td>½ N², 5 N² + 22 N log N + 3N</td>
<td>classify algorithms</td>
</tr>
<tr>
<td>Big Oh</td>
<td>O(N²) and smaller</td>
<td>O(N²)</td>
<td>10 N², 100 N, 22 N log N + 3 N</td>
<td>develop upper bounds</td>
</tr>
<tr>
<td>Big Omega</td>
<td>Θ(N²) and larger</td>
<td>Ω(N²)</td>
<td>½ N², N², N² + 22 N log N + 3 N</td>
<td>develop lower bounds</td>
</tr>
</tbody>
</table>

Common mistake. Interpreting big-Oh as an approximate model.

Tilde notation vs. big-Oh notation

We use tilde notation whenever possible.
- Big-Oh notation suppresses leading constant.
- Big-Oh notation only provides upper bound (not lower bound).

O-notation considered harmful

How to predict performance (and to compare algorithms)?

Not the scientific method: O-notation

- Theorem: Running time is O(N) ✗
 - not at all useful for predicting performance

Scientific method calls for tilde-notation.

- Hypothesis: Running time is ~aN² ✓
 - an effective path to predicting performance (stay tuned)

O-notation is useful for many reasons, BUT

Common error: Thinking that O-notation is useful for predicting performance.
Typical memory requirements for primitive types in Java

- **Bit.** 0 or 1.
- **Byte.** 8 bits.
- **Megabyte (MB).** 1 million bytes.
- **Gigabyte (GB).** 1 billion bytes.

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>1</td>
</tr>
<tr>
<td>byte</td>
<td>1</td>
</tr>
<tr>
<td>char</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
</tr>
</tbody>
</table>

for primitive types

Typical memory requirements for arrays in Java

- **Array overhead.** 16 bytes.

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>char[]</td>
<td>2N + 16</td>
</tr>
<tr>
<td>int[]</td>
<td>4N + 16</td>
</tr>
<tr>
<td>double[]</td>
<td>8N + 16</td>
</tr>
</tbody>
</table>

for one-dimensional arrays

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>char[][]</td>
<td>~2MN</td>
</tr>
<tr>
<td>int[][]</td>
<td>~4MN</td>
</tr>
<tr>
<td>double[][]</td>
<td>~8MN</td>
</tr>
</tbody>
</table>

for two-dimensional arrays

Ex. An N-by-N array of doubles consumes $\sim N^2$ bytes of memory.

Ex. A Complex object consumes 24 bytes of memory.

```java
public class Complex {
    private double re;
    private double im;
    ...
}
```

8 bytes (object overhead)

24 bytes

Ex 1. A Complex object consumes 24 bytes of memory.

Ex 2. A virgin String of length N consumes $\sim 2N$ bytes of memory.

```java
public class String {
    private int offset;
    private int count;
    private int hash;
    private char[] value;
    ...
}
```

8 bytes (object overhead)

24 bytes (String object (Java library))

substring example

```
String genome = "CGCCTGGCGTCTGTAC";
String codon = genome.substring(6, 3);
```

object overhead

8 object overhead

24 object overhead
Example

Q. How much memory does WeightedQuickUnionUF use as a function of N?

```java
public class WeightedQuickUnionUF {
    private int[] id;
    private int[] sz;

    public WeightedQuickUnionUF(int N) {
        id = new int[N];
        sz = new int[N];
        for (int i = 0; i < N; i++) id[i] = i;
        for (int i = 0; i < N; i++) sz[i] = 1;
    }

    public boolean find(int p, int q) {
        // implementation...
    }

    public void union(int p, int q) {
        // implementation...
    }
}
```

Turning the crank: summary

Empirical analysis.
- Execute program to perform experiments.
- Assume power law and formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.
- Analyze algorithm to count frequency of operations.
- Use tilde notation to simplify analysis.
- Model enables us to explain behavior.

Scientific method.
- Mathematical model is independent of a particular system; applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.