
Suppose that we seek the key of rank k (the key 
such that precisely k other keys in the BST are 
smaller). If the number of keys t in the left sub-
tree is larger than k, we look (recursively) for the 
key of rank k in the left subtree; if t is equal to k, 
we return the key at the root; and if t is smaller 
than k, we look (recursively) for the key of rank 
k  t  1 in the right subtree. As usual, this de-
scription serves both as the basis for the recursive 
select() method on the facing page and for a 
proof by induction that it works as expected. 

Rank.  The inverse method rank() that returns 
the rank of a given key is similar: If the given 
key is equal to the key at the root, we return the 
number of keys t in the left subtree; if the given 
key is less than the key at the root, we return the 
rank of the key in the left subtree (recursively 

computed); and if the 
given key is larger than 
the key at the root, we re-
turn t plus one (to count 
the key at the root) plus 
the rank of the key in the 
right subtree (recursively 
computed). 

Delete  the minimum/maximum.  The most difficult BST op-
eration to implement is the delete() method that removes a 
key-value-pair from the symbol table. As a warmup, consider 
deleteMin() (remove the key-value pair with the smallest key). 
As with put() we write a recursive method that takes a link to 
a Node as argument and returns a link to a Node, so that we can 
reflect changes to the tree by assigning the result to the link used 
as argument. For deleteMin() we go left until finding a Node 
that has a null left link and then replace the link to that node by 
its right link (simply by returning the right link in the recursive 
method). The deleted node, with no link now pointing to it, is 
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available for garbage collection. Our standard recursive setup accomplishes, after the 
deletion, the task of setting the appropriate link in the parent and updating the counts 
in all nodes in the path to the root. The symmetric method works for deleteMax(). 

Delete.  We can proceed in a similar manner to de-
lete any node that has one child (or no children), but 
what can we do to delete a node that has two chil-
dren? We are left with two links, but have a place in 
the parent node for only one of them. An answer to 
this dilemma, first proposed by T. Hibbard in 1962, 
is to delete a node x by replacing it with its successor. 
Because x has a right child, its successor is the node 
with the smallest key in its right subtree. The replace-
ment preserves order in the tree because there are no 
keys between x.key and the successor’s key. We can 
accomplish the task of replacing x by its successor in 
four (!) easy steps: 

n	 Save a link to the node to be deleted in t. 
n	 Set x to point to its successor min(t.right). 
n	 Set the right link of x (which is supposed to 

point to the BST containing all the keys larger 
than x.key) to deleteMin(t.right), the link 
to the BST containing all the keys that are larger 
than x.key after the deletion. 

n	 Set the left link of x (which was null) to t.left 
(all the keys that are less than both the deleted 
key and its successor).

Our standard recursive setup accomplishes, after the 
recursive calls, the task of setting the appropriate link 
in the parent and decrementing the node counts in 
the nodes on the path to the root (again, we accom-
plish the task of updating the counts by setting the counts in each node on the search 
path to be one plus the sum of the counts in its children). While this method does the 
job, it has a flaw that might cause performance problems in some practical situations. 
The problem is that the choice of using the successor is arbitrary and not symmetric. 
Why not use the predecessor? In practice, it is worthwhile to choose at random between 
the predecessor and the successor. See Exercise 3.2.37 for details.
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aLGorIthM 3.3 (continued) Deletion in BSts

public void deleteMin() 
{   
   if (isEmpty()) return; 
   root = deleteMin(root); 
}

private Node deleteMin(Node x) 
{ 
   if (x.left == null) return x.right; 
   x.left = deleteMin(x.left); 
   x.N = size(x.left) + size(x.right) + 1; 
   return x; 
}

public void delete(Key key) 
{  root = delete(root, key);  }

private Node delete(Node x, Key key) 
{ 
   if (x == null) return null; 
   int cmp = key.compareTo(x.key); 
   if      (cmp < 0) x.left  = delete(x.left,  key); 
   else if (cmp > 0) x.right = delete(x.right, key); 
   else  
   { 
      if (x.right == null) return x.left; 
      if (x.left == null) return x.right; 
      Node t = x; 
      x = min(t.right);  // See page 313.
      x.right = deleteMin(t.right); 
      x.left = t.left; 
   } 
   x.N = size(x.left) + size(x.right) + 1; 
   return x; 
}

These methods implement eager Hibbard deletion in BSTs, as described in the text on the facing 
page. The delete() code is compact, but tricky. Perhaps the best way to understand it is to read 
the description at left, try to write the code yourself on the basis of the description, then compare 
your code with this code. This method is typically effective, but performance in large-scale applica-

tions can become a bit problematic (see Exercise 3.2.37). The deleteMax() method is the same as 
deleteMin() with right and left interchanged.
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