
Suppose that we seek the key of rank k (the key
such that precisely k other keys in the BST are
smaller). If the number of keys t in the left sub-
tree is larger than k, we look (recursively) for the
key of rank k in the left subtree; if t is equal to k,
we return the key at the root; and if t is smaller
than k, we look (recursively) for the key of rank
k  t  1 in the right subtree. As usual, this de-
scription serves both as the basis for the recursive
select() method on the facing page and for a
proof by induction that it works as expected.

Rank.  The inverse method rank() that returns
the rank of a given key is similar: If the given
key is equal to the key at the root, we return the
number of keys t in the left subtree; if the given
key is less than the key at the root, we return the
rank of the key in the left subtree (recursively

computed); and if the
given key is larger than
the key at the root, we re-
turn t plus one (to count
the key at the root) plus
the rank of the key in the
right subtree (recursively
computed).

Delete  the minimum/maximum.  The most difficult BST op-
eration to implement is the delete() method that removes a
key-value-pair from the symbol table. As a warmup, consider
deleteMin() (remove the key-value pair with the smallest key).
As with put() we write a recursive method that takes a link to
a Node as argument and returns a link to a Node, so that we can
reflect changes to the tree by assigning the result to the link used
as argument. For deleteMin() we go left until finding a Node
that has a null left link and then replace the link to that node by
its right link (simply by returning the right link in the recursive
method). The deleted node, with no link now pointing to it, is

8 keys in left subtree
so search for key of
rank 3 on the left

count N
8

2 keys in left subtree so
search for key of rank

3-2-1 = 0 on the right

2

0 keys in left subtree
and searching for

key of rank 0
so return H

2 keys in left subtree
so search for key of
rank 0 on the left

2

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

�nding select(3)
the key of rank 3

Selection in a BST

go left until
reaching null

left link

return that
node’s right link

available for
garbage collection

5

7

update links and node counts
after recursive calls

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

C

E

H

M

R

S

X

Deleting the minimum in a BST

314 Chapter three n Searching

available for garbage collection. Our standard recursive setup accomplishes, after the
deletion, the task of setting the appropriate link in the parent and updating the counts
in all nodes in the path to the root. The symmetric method works for deleteMax().

Delete.  We can proceed in a similar manner to de-
lete any node that has one child (or no children), but
what can we do to delete a node that has two chil-
dren? We are left with two links, but have a place in
the parent node for only one of them. An answer to
this dilemma, first proposed by T. Hibbard in 1962,
is to delete a node x by replacing it with its successor.
Because x has a right child, its successor is the node
with the smallest key in its right subtree. The replace-
ment preserves order in the tree because there are no
keys between x.key and the successor’s key. We can
accomplish the task of replacing x by its successor in
four (!) easy steps:

n	 Save a link to the node to be deleted in t.
n	 Set x to point to its successor min(t.right).
n	 Set the right link of x (which is supposed to

point to the BST containing all the keys larger
than x.key) to deleteMin(t.right), the link
to the BST containing all the keys that are larger
than x.key after the deletion.

n	 Set the left link of x (which was null) to t.left
(all the keys that are less than both the deleted
key and its successor).

Our standard recursive setup accomplishes, after the
recursive calls, the task of setting the appropriate link
in the parent and decrementing the node counts in
the nodes on the path to the root (again, we accom-
plish the task of updating the counts by setting the counts in each node on the search
path to be one plus the sum of the counts in its children). While this method does the
job, it has a flaw that might cause performance problems in some practical situations.
The problem is that the choice of using the successor is arbitrary and not symmetric.
Why not use the predecessor? In practice, it is worthwhile to choose at random between
the predecessor and the successor. See Exercise 3.2.37 for details.

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
 min(t.right)

t.left

x

update links and
node counts after

recursive calls

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

A

C

H

A

C

H

M

R

M

R

S

X

E

S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

316 Chapter three n Searching

aLGorIthM 3.3 (continued) Deletion in BSts

public void deleteMin()
{
 if (isEmpty()) return;
 root = deleteMin(root);
}

private Node deleteMin(Node x)
{
 if (x.left == null) return x.right;
 x.left = deleteMin(x.left);
 x.N = size(x.left) + size(x.right) + 1;
 return x;
}

public void delete(Key key)
{ root = delete(root, key); }

private Node delete(Node x, Key key)
{
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = delete(x.left, key);
 else if (cmp > 0) x.right = delete(x.right, key);
 else
 {
 if (x.right == null) return x.left;
 if (x.left == null) return x.right;
 Node t = x;
 x = min(t.right); // See page 313.
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.N = size(x.left) + size(x.right) + 1;
 return x;
}

These methods implement eager Hibbard deletion in BSTs, as described in the text on the facing
page. The delete() code is compact, but tricky. Perhaps the best way to understand it is to read
the description at left, try to write the code yourself on the basis of the description, then compare
your code with this code. This method is typically effective, but performance in large-scale applica-

tions can become a bit problematic (see Exercise 3.2.37). The deleteMax() method is the same as
deleteMin() with right and left interchanged.

3173.2 n BinarySearchTrees

	Algs4PE314
	Algs4PE316
	Algs4PE317

