
Proposition Q.  In an N-key priority queue, the heap
algorithms require no more than lg N compares for in-
sert and no more than 2 lg N  compares for remove the
maximum.

Proof:  Both operations involve moving along a path be-
tween the root and the bottom of the heap whose length
is no more than lg N by Proposition P. The remove the
maximum operation requires two compares for each
node: one to find the child with the larger key, the other
to decide whether that child needs to be promoted.

For typical applications that require a large number of inter-
mixed insert and remove the maximum operations in a large
priority queue, Proposition o represents an important per-
formance breakthrough, summarized in the table at the top
of the next page. Where elementary implementations using
an ordered array or an unordered array require linear time
for one of the operations, a heap-based implementation pro-
vides a guarantee that both operations complete in logarith-
mic time. This improvement can make the difference between
solving a problem and not being able to address it at all.

We conclude our study of the heap priority queue API im-
plementation with a few practical considerations.

Dynamic array resizing.  Adding a no-argument construc-
tor, code for array doubling in insert(), and code for array
halving in delMax() is easily accomplished, just as we did for
stacks and queues in Chapter 1. Thus, clients need not be
concerned about arbitrary size restrictions. The logarithmic
time bounds implied by PROPOSITION Q are amortized when
the size of the priority queue is arbitrary and the arrays are
resized (see Exercise 2.4.23).

Immutability of keys.  The priority queue contains objects
that are created by clients, but assumes that client code does
not change the keys (which might invalidate the heap-order

P

Q

P

Q

E

P

E

X

P

A

M

E

X

P

A

M

P

E

A

P

M

P

E

A

P

M

P

E

L

A

P

M

P

E

L

E

A

M

E

P

E

L

P

E

E

X

P

A

Priority queue operations
in a heap

insert P

insert Q

insert E

remove max (Q)

insert X

insert A

insert M

remove max (X)

insert P

insert L

insert E

remove max (P)

224 Chapter 2  n  Sorting

