ALGORITHM 2.3 Shellsort

public class Shell
{ // Shellsort.
public static void sort(Comparable[] a)
{ // Sort a[] into increasing order.
int N = a.length;
int h = 1;
while ¢(h < N/3) h=3*h+1; // 1, 4, 13, 40, 121, 364, 1093,
while (h >= 1)
{ // h-sort the array.
for (int i = h; i < N; i++)
{ // Insert a[i] among a[i-h], a[i-2*h], a[i-3*h]... .
for (int j = 1i; j >= h & Tess(al[j], a[j-hl); j -= h)
exch(a, j, j-h);
}
h = h/3;

If we modify insertion sort (ALGORITHM 2.2) to h-sort the array and add an outer loop to decrease
h through a sequence of increments starting at an increment as large as a constant fraction of the
array length and ending at 1, we are led to this compact shellsort implementation.

% java SortCompare Shell Insertion 100000 100
For 100000 random Doubles
Shell is 600 times faster than Insertion

input S

4-sort |

S
13-sort p L S
H
L

1-sort A

Shellsort trace (array contents after each pass)

