COS 226 Algorithms and Data Structures Fall 2008

Midterm Solutions

1. 8 sorting algorithms.

0652493871

2. Sorting equal keys.

Insertion Ag Al A2 A3 A4 A5 A6

Selection AU A1 A2 A3 A4 A5 A6

Shellsort AU A1 A2 A3 A4 A5 A6

Mergesort AO A1 A2 A3 A4 A5 A6

Quicksort | Ay Az As Ag Ag As Aq

Heapsort Al A2 A3 A4 A5 A6 AO

3. Analysis of algorithms.

(a) T and II only
Big-Oh notation and tilde notation both suppress lower order terms.
(b) I only

Amortized analysis provides a worst-case guarantee on any sequence of operations start-
ing from an empty data structure.



4. Binary heaps.

5. Ordered-array implementation of a set.

add (key) add the key to the set N
contains (key) is the key in the set? log N
ceiling(key) smallest key in set > given key log N

rank (key) number of keys in set < given key log N

select (i) ith largest key in the set 1

min() minimum key in the set 1
delete(key) delete the given key from the set N
iterator() iterate over all N keys in the set in order | N




6. Red-black trees.

7. Line intersection.

(a) There are two cases:

(b)

e If the two lines have the same slope (ap = a1), then return no intersection.
e Otherwise, the point (x,y) of intersection is given by:
b1 —bo

x = , Yy =apr+by
a; — aop

To determine whether the ¢th line is involved in an intersection with 3 (or more) lines:

e Create a symbol table with key = point, value = list (say, a queue) of lines.

e For each line j # ¢ in order:

Compute the intersection point p between line ¢ and line j.
— If they don’t intersect, continue.

If the key p is not already in the symbol table, add an entry to the symbol table
with key = p and value = empty list.
— Add line j to the end of the list associated with p.
e For each key in the symbol table, if it’s list contains 2 (or more) lines, they correspond
to 3 (or more) lines intersecting at a single point (line ¢, plus the lines in the list).

Implement the symbol table using a separate-chaining (or linear-probing) hash table so
that each insert/search takes O(1) time. Thus, the overall subroutine takes O(N) time.

To determine whether any 3 (or more lines) intersect at a point, run the previous sub-
routine N times, once for each line i. The total running time is O(N?).

Only print out a set of lines in the last step of the subroutine if the index of the first
line in the list is greater than i. This guarantees we only find a set of lines once, when
using the line with the smallest index as the base line.



