Quicksort Partitioning

Partitioning trace (array contents before and after each exchange)
Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].
• Scan j from right to left so long as a[j] > a[lo].
• Exchange a[i] with a[j].

\[K \quad R \quad A \quad T \quad E \quad L \quad E \quad P \quad U \quad I \quad M \quad Q \quad C \quad X \quad O \quad S \]

\[\uparrow \quad \uparrow \quad \uparrow \]

lo i j

stop i scan because a[i] >= a[lo]
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
Quicksort partitioning

Repeat until \(i \) and \(j \) pointers cross.

- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
Quicksort partitioning

Repeat until i and j pointers cross.

• Scan i from left to right so long as \(a[i] < a[lo] \).
• Scan j from right to left so long as \(a[j] > a[lo] \).
• Exchange \(a[i] \) with \(a[j] \).

stop j scan and exchange \(a[i] \) with \(a[j] \)
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
QuickSort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as \(a[i] < a[lo] \).
- Scan j from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as \(a[i] < a[lo] \).
- Scan j from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).

```
K C A T E L E P U I M Q R X O S
```

\(\uparrow \) \(\uparrow \) \(\uparrow \)
\(lo \) \(i \) \(j \)

stop i scan because \(a[i] \geq a[lo] \)
QuickSort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as \(a[i] < a[lo] \).
- Scan j from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
QuickSort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as \(a[i] < a[lo] \).
- Scan j from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
Quicksort partitioning

Repeat until \(i \) and \(j \) pointers cross.

- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).

stop \(j \) scan and exchange \(a[i] \) with \(a[j] \)
Quicksort partitioning

Repeat until i and j pointers cross.

• Scan i from left to right so long as \(a[i] < a[lo]\).
• Scan j from right to left so long as \(a[j] > a[lo]\).
• Exchange \(a[i]\) with \(a[j]\).
QuickSort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
Quicksort partitioning

Repeat until i and j pointers cross.

• Scan i from left to right so long as a[i] < a[lo].
• Scan j from right to left so long as a[j] > a[lo].
• Exchange a[i] with a[j].

stop i scan because a[i] >= a[lo]
Quicksort partitioning

Repeat until i and j pointers cross.
- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
Quicksort partitioning

 Repeat until i and j pointers cross.

• Scan i from left to right so long as $a[i] < a[lo]$.
• Scan j from right to left so long as $a[j] > a[lo]$.
• Exchange $a[i]$ with $a[j]$.
QuickSort partitioning

Repeat until \(i\) and \(j\) pointers cross.

- Scan \(i\) from left to right so long as \(a[i] < a[lo]\).
- Scan \(j\) from right to left so long as \(a[j] > a[lo]\).
- Exchange \(a[i]\) with \(a[j]\).

\[\text{\texttt{K C A I E L E P U T M Q R X O S}}\]

\[\uparrow \quad \uparrow \quad \uparrow\]

\(\text{lo} \quad i \quad j\)

stop \(j\) scan and exchange \(a[i]\) with \(a[j]\)
Quicksort partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
Quicksort partitioning

Repeat until i and j pointers cross.

• Scan i from left to right so long as \(a[i] < a[lo] \).
• Scan j from right to left so long as \(a[j] > a[lo] \).
• Exchange \(a[i] \) with \(a[j] \).

\[\]

\[\]

stop i scan because \(a[i] \geq a[lo] \)
Quicksort partitioning

Repeat until i and j pointers cross.

• Scan i from left to right so long as a[i] < a[lo].
• Scan j from right to left so long as a[j] > a[lo].
• Exchange a[i] with a[j].

stop j scan because a[j] <= a[lo]
Quicksort partitioning

Repeat until \(i \) and \(j \) pointers cross.
- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).

When pointers cross.
- Exchange \(a[lo] \) with \(a[j] \).

pointers cross: exchange \(a[lo] \) with \(a[j] \)
Quicksort partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as a[i] < a[lo].
• Scan j from right to left so long as a[j] > a[lo].
• Exchange a[i] with a[j].

When pointers cross.
• Exchange a[lo] with a[j].

partitioned!
Dijkstra 3-Way Partitioning
Dijkstra 3-way partitioning

- Let v be partitioning element $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i
Dijkstra 3-way partitioning

- Let v be partitioning element $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i

```
| P | A | B | X | W | P | P | V | P | D | P | C | Y | Z |
```

Invariant

```
<table>
<thead>
<tr>
<th>&lt;V</th>
<th>=V</th>
<th>&gt;V</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>lt</td>
<td>i</td>
<td>gt</td>
</tr>
</tbody>
</table>
```
Dijkstra 3-way partitioning

- Let \(v \) be partitioning element \(a[lo] \).
- Scan \(i \) from left to right.
 - \((a[i] < v) \): exchange \(a[lt] \) with \(a[i] \) and increment both \(lt \) and \(i \)
 - \((a[i] > v) \): exchange \(a[gt] \) with \(a[i] \) and decrement \(gt \)
 - \((a[i] == v) \): increment \(i \)
Dijkstra 3-way partitioning

• Let v be partitioning element $a[lo]$.
• Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i

\[\begin{array}{ccccccccc}
\end{array}\]

\textbf{Invariant}

\[\begin{array}{|c|c|c|}
\hline
< V & = V & \text{gray} & > V \\
\hline
\uparrow & \uparrow & \uparrow \\
lt & i & gt \\
\hline
\end{array}\]
Dijkstra 3-way partitioning

- Let \(v \) be partitioning element \(a[lo] \).
- Scan \(i \) from left to right.
 - \((a[i] < v) \): exchange \(a[lt] \) with \(a[i] \) and increment both \(lt \) and \(i \)
 - \((a[i] > v) \): exchange \(a[gt] \) with \(a[i] \) and decrement \(gt \)
 - \((a[i] == v) \): increment \(i \)

Invariant

- \(<V \)
- \(=V \)
- \(>V \)
- \(lt \)
- \(i \)
- \(gt \)
Dijkstra 3-way partitioning

- Let \(v \) be partitioning element \(a[lo] \).
- Scan \(i \) from left to right.
 - \((a[i] < v)\): exchange \(a[lt] \) with \(a[i] \) and increment both \(lt \) and \(i \)
 - \((a[i] > v)\): exchange \(a[gt] \) with \(a[i] \) and decrement \(gt \)
 - \((a[i] == v)\): increment \(i \)
Dijkstra 3-way partitioning

- Let \(v \) be partitioning element \(a[lo] \).
- Scan \(i \) from left to right.
 - \((a[i] < v)\): exchange \(a[lt] \) with \(a[i] \) and increment both \(lt \) and \(i \)
 - \((a[i] > v)\): exchange \(a[gt] \) with \(a[i] \) and decrement \(gt \)
 - \((a[i] == v)\): increment \(i \)
Let \(v \) be partitioning element \(a[10] \).

Scan \(i \) from left to right.

- \((a[i] < v)\): exchange \(a[lt] \) with \(a[i] \) and increment both \(lt \) and \(i \)
- \((a[i] > v)\): exchange \(a[gt] \) with \(a[i] \) and decrement \(gt \)
- \((a[i] == v)\): increment \(i \)
Dijkstra 3-way partitioning

- Let v be partitioning element $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i

\[
\begin{array}{cccccccccccc}
\end{array}
\]

\[
\begin{array}{ccc}
\text{lt} & i & \text{gt} \\
\downarrow & \downarrow & \downarrow \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{lt} & i & \text{gt} \\
\uparrow & \uparrow & \uparrow \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
< V & = V & \text{gray} & > V \\
\uparrow & \uparrow & \uparrow \\
\text{lt} & i & \text{gt} \\
\end{array}
\]

\text{invariant}
Dijkstra 3-way partitioning

- Let \(v \) be partitioning element \(a[lo] \).
- Scan \(i \) from left to right.
 - \((a[i] < v)\): exchange \(a[lt] \) with \(a[i] \) and increment both \(lt \) and \(i \)
 - \((a[i] > v)\): exchange \(a[gt] \) with \(a[i] \) and decrement \(gt \)
 - \((a[i] == v)\): increment \(i \)

Dijkstra 3-way partitioning

- \(\text{lt} \)
- \(i \)
- \(\text{gt} \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>V</th>
<th>P</th>
<th>D</th>
<th>W</th>
<th>Y</th>
<th>Z</th>
<th>X</th>
</tr>
</thead>
</table>

Invariant

\[<v \quad =v \quad \boxed{\text{partition}} \quad >v\]

\[\downarrow \quad \uparrow \quad \uparrow \quad \downarrow\]

\[\text{lt} \quad i \quad \text{gt}\]
Dijkstra 3-way partitioning

- Let v be partitioning element $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i

Invariant

\[
\begin{array}{cccccccccccc}
\lt & i & \gt \\
\end{array}
\]
Dijkstra 3-way partitioning

• Let v be partitioning element $a[lo]$.
• Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i

Invariant

<table>
<thead>
<tr>
<th><V</th>
<th>=V</th>
<th>>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>lt</td>
<td>i</td>
<td>gt</td>
</tr>
</tbody>
</table>
Dijkstra 3-way partitioning

- Let \(v \) be partitioning element \(a[\text{lo}] \).
- Scan \(i \) from left to right.
 - \((a[i] < v)\): exchange \(a[\text{lt}] \) with \(a[i] \) and increment both \(\text{lt} \) and \(i \)
 - \((a[i] > v)\): exchange \(a[\text{gt}] \) with \(a[i] \) and decrement \(\text{gt} \)
 - \((a[i] == v)\): increment \(i \)
Dijkstra 3-way partitioning

- Let v be partitioning element $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i

invariant

\[
\begin{array}{ccccccc}
\LT & = & \vdots & = & \v \LT & = & \v \\
\LT & = & \v & \LT & = & \v \\
\end{array}
\]
Dijkstra 3-way partitioning

- Let v be partitioning element $a[lo]$.
- Scan i from left to right.
 - $(a[i] < v)$: exchange $a[lt]$ with $a[i]$ and increment both lt and i
 - $(a[i] > v)$: exchange $a[gt]$ with $a[i]$ and decrement gt
 - $(a[i] == v)$: increment i
Bentley-McIlroy 3-Way Partitioning
Bentley-McIlroy 3-way partitioning

Repeat until \(i \) and \(j \) pointers cross.

- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
- If \(a[i] == a[lo] \), exchange \(a[i] \) with \(a[p] \) and increment \(p \).
- If \(a[j] == a[lo] \), exchange \(a[j] \) with \(a[q] \) and decrement \(q \).
Bentley-McIlroy 3-way partitioning

Repeat until \(i \) and \(j \) pointers cross.

- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
- If \(a[i] == a[lo] \), exchange \(a[i] \) with \(a[p] \) and increment \(p \).
- If \(a[j] == a[lo] \), exchange \(a[j] \) with \(a[q] \) and decrement \(q \).
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
- If $a[i] == a[lo]$, exchange $a[i]$ with $a[p]$ and increment p.
- If $a[j] == a[lo]$, exchange $a[j]$ with $a[q]$ and decrement q.
Bentley-McIlroy 3-way partitioning

Repeat until \(i \) and \(j \) pointers cross.
- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
- If \(a[i] == a[lo] \), exchange \(a[i] \) with \(a[p] \) and increment \(p \).
- If \(a[j] == a[lo] \), exchange \(a[j] \) with \(a[q] \) and decrement \(q \).
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
- If $a[i] == a[lo]$, exchange $a[i]$ with $a[p]$ and increment p.
- If $a[j] == a[lo]$, exchange $a[j]$ with $a[q]$ and decrement q.

exchange $a[i]$ with $a[j]$
Bentley-McIlroy 3-way partitioning

Repeat until \(i \) and \(j \) pointers cross.
- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
- If \(a[i] == a[lo] \), exchange \(a[i] \) with \(a[p] \) and increment \(p \).
- If \(a[j] == a[lo] \), exchange \(a[j] \) with \(a[q] \) and decrement \(q \).
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
• Scan i from left to right so long as $a[i] < a[lo]$.
• Scan j from right to left so long as $a[j] > a[lo]$.
• Exchange $a[i]$ with $a[j]$.
• If $a[i] == a[lo]$, exchange $a[i]$ with $a[p]$ and increment p.
• If $a[j] == a[lo]$, exchange $a[j]$ with $a[q]$ and decrement q.
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
- If $a[i] == a[lo]$, exchange $a[i]$ with $a[p]$ and increment p.
- If $a[j] == a[lo]$, exchange $a[j]$ with $a[q]$ and decrement q.

exchange $a[i]$ with $a[j]$
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

• Scan i from left to right so long as \(a[i] < a[lo] \).
• Scan j from right to left so long as \(a[j] > a[lo] \).
• Exchange \(a[i] \) with \(a[j] \).
• If \(a[i] == a[lo] \), exchange \(a[i] \) with \(a[p] \) and increment \(p \).
• If \(a[j] == a[lo] \), exchange \(a[j] \) with \(a[q] \) and decrement \(q \).
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as \(a[i] < a[lo]\).
- Scan j from right to left so long as \(a[j] > a[lo]\).
- Exchange \(a[i]\) with \(a[j]\).
- If \(a[i] == a[lo]\), exchange \(a[i]\) with \(a[p]\) and increment \(p\).
- If \(a[j] == a[lo]\), exchange \(a[j]\) with \(a[q]\) and decrement \(q\).
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
- If $a[i] == a[lo]$, exchange $a[i]$ with $a[p]$ and increment p.
- If $a[j] == a[lo]$, exchange $a[j]$ with $a[q]$ and decrement q.

```plaintext
P P B C A P P V P D W X Y Z
```

lo i j hi
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as a[i] < a[lo].
- Scan j from right to left so long as a[j] > a[lo].
- Exchange a[i] with a[j].
- If a[i] == a[lo], exchange a[i] with a[p] and increment p.
- If a[j] == a[lo], exchange a[j] with a[q] and decrement q.

exchange a[i] with a[j]
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
- If $a[i] == a[lo]$, exchange $a[i]$ with $a[p]$ and increment p.
- If $a[j] == a[lo]$, exchange $a[j]$ with $a[q]$ and decrement q.

exchange $a[j]$ with $a[q]$ and decrement q
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as \(a[i] < a[lo] \).
- Scan j from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
- If \(a[i] == a[lo] \), exchange \(a[i] \) with \(a[p] \) and increment \(p \).
- If \(a[j] == a[lo] \), exchange \(a[j] \) with \(a[q] \) and decrement \(q \).
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
- If $a[i] == a[lo]$, exchange $a[i]$ with $a[p]$ and increment p.
- If $a[j] == a[lo]$, exchange $a[j]$ with $a[q]$ and decrement q.

![Diagram of partitioning process]

Variables:
- p and q for pointers
- lo, i, j, and hi for partitioning boundaries
Bentley-McIlroy 3-way partitioning

Repeat until \(i \) and \(j \) pointers cross.

- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
- If \(a[i] == a[lo] \), exchange \(a[i] \) with \(a[p] \) and increment \(p \).
- If \(a[j] == a[lo] \), exchange \(a[j] \) with \(a[q] \) and decrement \(q \).
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
- If $a[i] == a[lo]$, exchange $a[i]$ with $a[p]$ and increment p.
- If $a[j] == a[lo]$, exchange $a[j]$ with $a[q]$ and decrement q.

exchange $a[i]$ with $a[p]$ and increment p
Bentley-McIlroy 3-way partitioning

Repeat until \(i \) and \(j \) pointers cross.

- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
- If \(a[i] == a[lo] \), exchange \(a[i] \) with \(a[p] \) and increment \(p \).
- If \(a[j] == a[lo] \), exchange \(a[j] \) with \(a[q] \) and decrement \(q \).
Bentley-McIlroy 3-way partitioning

Repeat until \(i \) and \(j \) pointers cross.
- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
- If \(a[i] == a[lo] \), exchange \(a[i] \) with \(a[p] \) and increment \(p \).
- If \(a[j] == a[lo] \), exchange \(a[j] \) with \(a[q] \) and decrement \(q \).
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.
- Scan i from left to right so long as $a[i] < a[lo]$.
- Scan j from right to left so long as $a[j] > a[lo]$.
- Exchange $a[i]$ with $a[j]$.
- If $a[i] == a[lo]$, exchange $a[i]$ with $a[p]$ and increment p.
- If $a[j] == a[lo]$, exchange $a[j]$ with $a[q]$ and decrement q.
Bentley-McIlroy 3-way partitioning

Repeat until i and j pointers cross.

- Scan i from left to right so long as \(a[i] < a[lo] \).
- Scan j from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
- If \(a[i] == a[lo] \), exchange \(a[i] \) with \(a[p] \) and increment \(p \).
- If \(a[j] == a[lo] \), exchange \(a[j] \) with \(a[q] \) and decrement \(q \).
Bentley-McIlroy 3-way partitioning

Repeat until \(i \) and \(j \) pointers cross.

- Scan \(i \) from left to right so long as \(a[i] < a[lo] \).
- Scan \(j \) from right to left so long as \(a[j] > a[lo] \).
- Exchange \(a[i] \) with \(a[j] \).
- If \(a[i] == a[lo] \), exchange \(a[i] \) with \(a[p] \) and increment \(p \).
- If \(a[j] == a[lo] \), exchange \(a[j] \) with \(a[q] \) and decrement \(q \).
Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

- Scan \(j\) and \(p\) from right to left and exchange \(a[j]\) with \(a[p]\).
- Scan \(i\) and \(q\) from left to right and exchange \(a[i]\) with \(a[q]\).
Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

- Scan j and p from right to left and exchange $a[j]$ with $a[p]$.
- Scan i and q from left to right and exchange $a[i]$ with $a[q]$.

exchange $a[j]$ with $a[p]$
Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

- Scan j and p from right to left and exchange $a[j]$ with $a[p]$.
- Scan i and q from left to right and exchange $a[i]$ with $a[q]$.
Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

- Scan \(j \) and \(p \) from right to left and exchange \(a[j] \) with \(a[p] \).
- Scan \(i \) and \(q \) from left to right and exchange \(a[i] \) with \(a[q] \).
Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

- Scan \(j \) and \(p \) from right to left and exchange \(a[j] \) with \(a[p] \).
- Scan \(i \) and \(q \) from left to right and exchange \(a[i] \) with \(a[q] \).

exchange \(a[i] \) with \(a[q] \)
Bentley-McIlroy 3-way partitioning

Afterwards, swap equal keys to the center.

• Scan \(j \) and \(p \) from right to left and exchange \(a[j] \) with \(a[p] \).
• Scan \(i \) and \(q \) from left to right and exchange \(a[i] \) with \(a[q] \).