
Iterators.  To enable clients to process
all the keys and values in the table we
might add the phrase implements

Iterable<Key> to the first line of the
API to specify that every implementa-
tion must implement an iterator()
method that returns an iterator hav-
ing appropriate implementations of
hasNext() and next(), as described
for stacks and queues in Section 1.3.
For symbol tables, we adopt a simpler
alternative approach, where we spec-
ify a keys() method that returns an
Iterable<Key> object for clients to
use to iterate through the keys.

Key equality.  How do we test wheth-
er two keys are equal? Java gives us
a head start by ensuring that all objects inherit an equals() method and providing
implementations both for standard types such as Integer, Double, and String and for
more complicated types such as Date, File and URL. When using these types of data,
you can just use the built-in implementation. For example, if x and y are String values,
then x.equals(y) is true if and only if x and y have the same length and are identical
in each character position. In pratice, keys might be more complicated, like the Person
class shown above. For such client-defined keys, you need to override equals(). Java’s
convention is that equals() must be an equivalence relation. It must be:

n	 reflexive : x.equals(x) is true
n	 symmetric : x.equals(y) is true if and only if y.equals(x)
n	 transitive : if x.equals(y) and y.equals(z) are true, then so is x.equals(z)

In addition, it must take an Object as argument and satisfy the following properties.
n	 consistent : multiple invocations of x.equals(y) consistently return the same

value, provided neither object is modified
n	 not null : x.equals(null) returns false

These are natural definitions, but ensuring that these properties hold and adhering to
Java conventions can be tricky, as illustrated in the example above. The convention that
the argument is of type Object means that we must check whether the two objects are
of the same type before then casting one to this class and checking equality of instance
variables (typically). A best practice is to make Key types immutable, because consis-
tency cannot otherwise be guaranteed.

public class Person
{
 private final String name;
 private final long moreInfo;

 public boolean equals(Object x)
 {
 if (this == x) return true;
 if (x == null) return false;
 if (this.getClass() != x.getClass())
 return false;
 Person that = (Person) x;
 return this.name.equals(that.name)
 && (this.moreInfo == that.moreInfo);
 }
}

Implementing equals() in a client-defined key type

2713.1 n SymbolTables

