The Design of C: A Rational Reconstruction

Jennifer Rexford
Goals of this Lecture

• Number systems
 • Binary numbers
 • Finite precision
 • Binary arithmetic
 • Logical operators

• Design rationale for C
 • Decisions available to the designers of C
 • Decisions made by the designers of C
Number Systems
Why Bits (Binary Digits)?

- Computers are built using digital circuits
 - Inputs and outputs can have only two values
 - True (high voltage) or false (low voltage)
 - Represented as 1 and 0

- Can represent many kinds of information
 - Boolean (true or false)
 - Numbers (23, 79, …)
 - Characters (‘a’, ‘z’, …)
 - Pixels, sounds
 - Internet addresses

- Can manipulate in many ways
 - Read and write
 - Logical operations
 - Arithmetic
Base 10 and Base 2

- **Decimal (base 10)**
 - Each digit represents a power of 10
 - \(4173 = 4 \times 10^3 + 1 \times 10^2 + 7 \times 10^1 + 3 \times 10^0 \)

- **Binary (base 2)**
 - Each bit represents a power of 2
 - \(10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22 \)

Convert decimal to binary: divide by 2, keep remainders

\[
\begin{align*}
12 / 2 &= 6 \quad R = 0 \\
6 / 2 &= 3 \quad R = 0 \\
3 / 2 &= 1 \quad R = 1 \\
1 / 2 &= 0 \quad R = 1 \\
\text{Result} &= 1100
\end{align*}
\]
Writing Bits is Tedious for People

- **Octal (base 8)**
 - Digits 0, 1, …, 7

- **Hexadecimal (base 16)**
 - Digits 0, 1, …, 9, A, B, C, D, E, F

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
</tr>
<tr>
<td>1011</td>
<td>B</td>
</tr>
<tr>
<td>1100</td>
<td>C</td>
</tr>
<tr>
<td>1101</td>
<td>D</td>
</tr>
<tr>
<td>1110</td>
<td>E</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
</tr>
</tbody>
</table>

Thus the 16-bit binary number 1011 0010 1010 1001 converted to hex is B2A9.
Representing Colors: RGB

• Three primary colors
 • Red
 • Green
 • Blue

• Strength
 • 8-bit number for each color (e.g., two hex digits)
 • So, 24 bits to specify a color

• In HTML, e.g. course “Schedule” Web page
 • Red: De-Comment Assignment Due
 • Blue: Reading Period

• Same thing in digital cameras
 • Each pixel is a mixture of red, green, and blue
Finite Representation of Integers

• Fixed number of bits in memory
 • Usually 8, 16, or 32 bits
 • (1, 2, or 4 bytes)

• Unsigned integer
 • No sign bit
 • Always 0 or a positive number
 • All arithmetic is modulo 2^n

• Examples of unsigned integers
 • 00000001 \Rightarrow 1
 • 00001111 \Rightarrow 15
 • 00010000 \Rightarrow 16
 • 00100001 \Rightarrow 33
 • 11111111 \Rightarrow 255
Adding Two Integers

• From right to left, we add each pair of digits
• We write the sum, and add the carry to the next column

<table>
<thead>
<tr>
<th>Base 10</th>
<th>Base 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9 8</td>
<td>0 1 1</td>
</tr>
<tr>
<td>+ 2 6 4</td>
<td>+ 0 0 1</td>
</tr>
<tr>
<td>Sum 4 6 2</td>
<td>Sum 1 0 0</td>
</tr>
<tr>
<td>Carry 0 1 1</td>
<td>Carry 0 1 1</td>
</tr>
</tbody>
</table>
Binary Sums and Carries

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR
("exclusive OR")

AND

0100 0101
+0110 0111
\[\text{1010 1100}\]

69 \[\rightarrow\] 103 \[\rightarrow\] 172
Modulo Arithmetic

• Consider only numbers in a range
 • E.g., five-digit car odometer: 0, 1, ..., 99999
 • E.g., eight-bit numbers 0, 1, ..., 255

• Roll-over when you run out of space
 • E.g., car odometer goes from 99999 to 0, 1, ...
 • E.g., eight-bit number goes from 255 to 0, 1, ...

• Adding 2^n doesn’t change the answer
 • For eight-bit number, n=8 and $2^n=256$
 • E.g., $(37 + 256) \mod 256$ is simply 37

• This can help us do subtraction…
 • $a - b$: equals $a + (256 -1 - b) + 1$
One’s and Two’s Complement

• One’s complement: flip every bit
 - E.g., b is 01000101 (i.e., 69 in decimal)
 - One’s complement is 10111010
 - That’s simply 255-69

• Subtracting from 11111111 is easy (no carry needed!)

\[
\begin{array}{c}
1111 1111 \\
- 0100 0101 \\
\hline
1011 1010
\end{array}
\]

\[\text{b} \quad \text{one’s complement}\]

• Two’s complement
 - Add 1 to the one’s complement
 - E.g., \((255 - 69) + 1 \Rightarrow 1011 1011\)
Putting it All Together

• Computing “a – b”
 • Same as “a + 256 – b”
 • Same as “a + (255 – b) + 1”
 • Same as “a + onesComplement(b) + 1”
 • Same as “a + twosComplement(b)”

• Example: 172 – 69
 • The original number 69: 0100 0101
 • One’s complement of 69: 1011 1010
 • Two’s complement of 69: 1011 1011
 • Add to the number 172: 1010 1100
 • The sum comes to: 0110 0111
 • Equals: **103** in decimal
Signed Integers

- **Sign-magnitude representation**
 - Use one bit to store the sign
 - Zero for positive number
 - One for negative number
 - Examples
 - E.g., 0010 1100 \(\rightarrow\) 44
 - E.g., 1010 1100 \(\rightarrow\) -44
 - Hard to do arithmetic this way, so it is rarely used

- **Complement representation**
 - One’s complement
 - Flip every bit
 - E.g., 1101 0011 \(\rightarrow\) -44
 - Two’s complement
 - Flip every bit, then add 1
 - E.g., 1101 0100 \(\rightarrow\) -44
Overflow: Running Out of Room

- Adding two large integers together
 - Sum might be too big for the number of bits available
 - What happens?

- Unsigned integers
 - All arithmetic is “modulo” arithmetic
 - Sum would just wrap around

- Signed integers
 - Can get nonsense values
 - Example with 16-bit integers
 - Sum: 10000+20000+30000
 - Result: -5536
Bitwise Operators: AND and OR

- Bitwise AND (&)
 - Mod on the cheap!
 - E.g., 53 % 16
 - ... is same as 53 & 15;

\[
\begin{array}{c|cc}
\& & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1 \\
\end{array}
\]

- Bitwise OR (|)

\[
\begin{array}{c|cc}
| & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

53 \ 0 0 1 1 0 1 0 1
\& 15 \ 0 0 0 0 1 1 1 1

5 \ 0 0 0 0 0 1 0 1
Bitwise Operators: Not and XOR

- **One’s complement (\(~\)**)
 - Turns 0 to 1, and 1 to 0
 - E.g., set last three bits to 0
 - \(x = x \& \sim 7;\)

- **XOR (\(^\)**)
 - 0 if both bits are the same
 - 1 if the two bits are different

\[
\begin{array}{c|cc}
^ & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]
Bitwise Operators: Shift Left/Right

- **Shift left (<<):** Multiply by powers of 2
 - Shift some # of bits to the left, filling the blanks with 0

 \[
 \begin{align*}
 53 & \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \\
 53 \ll 2 & \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0
 \end{align*}
 \]

- **Shift right (>>):** Divide by powers of 2
 - Shift some # of bits to the right
 - For unsigned integer, fill in blanks with 0
 - What about signed negative integers?
 - Can vary from one machine to another!

 \[
 \begin{align*}
 53 & \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \\
 53 \gg 2 & \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1
 \end{align*}
 \]
Example: Counting the 1’s

• How many 1 bits in a number?
 • E.g., how many 1 bits in the binary representation of 53?

 0 0 1 1 0 1 0 1

 • Four 1 bits

• How to count them?
 • Look at one bit at a time
 • Check if that bit is a 1
 • Increment counter

• How to look at one bit at a time?
 • Look at the last bit: \(n \& 1 \)
 • Check if it is a 1: \((n \& 1) == 1 \), or simply \((n \& 1) \)
Counting the Number of ‘1’ Bits

```c
#include <stdio.h>
#include <stdlib.h>
int main(void) {
    unsigned int n;
    unsigned int count;
    printf("Number: ");
    if (scanf("%u", &n) != 1) {
        fprintf(stderr, "Error: Expect unsigned int.\n");
        exit(EXIT_FAILURE);
    }
    for (count = 0; n > 0; n >>= 1)
        count += (n & 1);
    printf("Number of 1 bits: %u\n", count);
    return 0;
}
```
Summary

• Computer represents everything in binary
 • Integers, floating-point numbers, characters, addresses, …
 • Pixels, sounds, colors, etc.

• Binary arithmetic through logic operations
 • Sum (XOR) and Carry (AND)
 • Two’s complement for subtraction

• Bitwise operators
 • AND, OR, NOT, and XOR
 • Shift left and shift right
 • Useful for efficient and concise code, though sometimes cryptic
The Design of C
Goals of C

Designers wanted C to support:

- **Systems programming**
 - Development of Unix OS
 - Development of Unix programming tools

But also:

- **Applications programming**
 - Development of financial, scientific, etc. applications

Systems programming was the primary intended use
The Goals of C (cont.)

The designers of wanted C to be:
- Low-level
 - Close to assembly/machine language
 - Close to hardware

But also:
- Portable
 - Yield systems software that is easy to port to differing hardware
The Goals of C (cont.)

The designers wanted C to be:
- Easy for **people** to handle
 - Easy to understand
 - **Expressive**
 - High (functionality/sourceCodeSize) ratio

But also:
- Easy for **computers** to handle
 - Easy/fast to compile
 - Yield efficient machine language code

Commonality:
- Small/simple
In light of those goals…

• What design decisions did the designers of C have?
• What design decisions did they make?

Consider programming language features,
from simple to complex…
Feature 1: Data Types

• Previously in this lecture:
 • Bits can be combined into bytes
 • Our interpretation of a collection of bytes gives it meaning
 • A signed integer, an unsigned integer, a RGB color, etc.

• **Data type**: well-defined interpretation of collection of bytes

• A high-level language should provide primitive data types
 • Facilitates abstraction
 • Facilitates manipulation via associated well-defined operators
 • Enables compiler to check for mixed types, inappropriate use of types, etc.
Primitive Data Types

• Thought process
 • C should handle:
 • Integers
 • Characters
 • Character strings
 • Logical (alias Boolean) data
 • Floating-point numbers
 • C should be small/simple

• Decisions
 • Provide integer, character, and floating-point data types
 • Do not provide a character string data type (More on that later)
 • Do not provide a logical data type (More on that later)
Integer Data Types

- Thought process
 - For flexibility, should provide integer data types of various sizes
 - For portability at application level, should specify size of each data type
 - For portability at systems level, should define integral data types in terms of natural word size of computer
 - Primary use will be systems programming
Integer Data Types (cont.)

• Decisions
 • Provide three integer data types: short, int, and long
 • Do not specify sizes; instead:
 • int is natural word size
 • 2 <= bytes in short <= bytes in int <= bytes in long

• Incidentally, on hats using gcc217
 • Natural word size: 4 bytes
 • short: 2 bytes
 • int: 4 bytes
 • long: 4 bytes
Integer Constants

• Thought process
 • People naturally use decimal
 • Systems programmers often use binary, octal, hexadecimal

• Decisions
 • Use decimal notation as default
 • Use "0" prefix to indicate octal notation
 • Use "0x" prefix to indicate hexadecimal notation
 • Do not allow binary notation; too verbose, error prone
 • Use "L" suffix to indicate long constant
 • Do not use a suffix to indicate short constant; instead must use cast

• Examples
 • int: 123, -123, 0173, 0x7B
 • long: 123L, -123L, 0173L, 0x7BL
 • short: (short)123, (short)-123, (short)0173, (short)0x7B
Unsigned Integer Data Types

• Thought process
 • Must represent positive and negative integers
 • Signed types are essential
 • Unsigned data can be twice as large as signed data
 • Unsigned data could be useful
 • Unsigned data are good for bit-level operations
 • Bit-level operations are common in systems programming
 • Implementing both signed and unsigned data types is complex
 • Must define behavior when an expression involves both
Unsigned Integer Data Types (cont.)

- Decisions
 - Provide unsigned integer types: `unsigned short`, `unsigned int`, and `unsigned long`
 - Conversion rules in mixed-type expressions are complex
 - Generally, mixing signed and unsigned converts signed to unsigned
 - See King book Section 7.4 for details

Do you see any potential problems?
Was providing unsigned types a good decision?
What decision did the designers of Java make?
Unsigned Integer Constants

• Thought process
 • “L” suffix distinguishes long from int; also could use a suffix to distinguish signed from unsigned
 • Octal or hexadecimal probably are used with bit-level operators

• Decisions
 • Default is signed
 • Use "U" suffix to indicate unsigned
 • Integers expressed in octal or hexadecimal automatically are unsigned

• Examples
 • unsigned int: 123U, 0173, 0x7B
 • unsigned long: 123UL, 0173L, 0x7BL
 • unsigned short: (short)123U, (short)0173, (short)0x7B
There’s More!

To be continued next lecture!