
9. Scientific Computing

Introduction to Computer Science in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 4/16/11 9:11 AM	

Applications of Scientific Computing

Science and engineering challenges.
  Fluid dynamics.
  Seismic surveys.
  Plasma dynamics.
  Ocean circulation.
  Electronics design.
  Pharmaceutical design.
  Human genome project.
  Vehicle crash simulation.
  Global climate simulation.
  Nuclear weapons simulation.
  Molecular dynamics simulation.

Common features.
  Problems tend to be continuous instead of discrete.
  Algorithms must scale to handle huge problems.

2

Commercial applications.
  Web search.
  Financial modeling.
  Computer graphics.
  Digital audio and video.
  Architecture walk-throughs.
  Natural language processing.
  Medical diagnostics (MRI, CAT).

Floating Point

IEEE 754 representation.
  Used by all modern computers.
  Scientific notation, but in binary.
  Single precision: float = 32 bits.
  Double precision: double = 64 bits.

Ex. Single precision representation of -0.453125.

3

1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign bit 8-bit exponent 23-bit significand

125 1/2 + 1/4 + 1/16 = 0.8125 -1

-1 × 2125 - 127 × 1.8125 = -0.453125

bias phantom bit

Floating Point

Remark. Most real numbers are not representable, including π and 1/10.

Roundoff error. When result of calculation is not representable.
Consequence. Non-intuitive behavior for uninitiated.

Financial computing. Calculate 9% sales tax on a 50¢ phone call.
Banker's rounding. Round to nearest integer, to even integer if tie.

4

if (0.1 + 0.2 == 0.3) { /* false */ }
if (0.1 + 0.3 == 0.4) { /* true */ }

double a1 = 1.14 * 75; // 85.49999999999999
double a2 = Math.round(a1); // 85

double b1 = 1.09 * 50; // 54.50000000000001
double b2 = Math.round(b1); // 55 SEC violation (!)

you lost 1¢

Floating Point

Remark. Most real numbers are not representable, including π and 1/10.

Roundoff error. When result of calculation is not representable.
Consequence. Non-intuitive behavior for uninitiated.

5

if (0.1 + 0.2 == 0.3) { /* false */ }
if (0.1 + 0.3 == 0.4) { /* true */ }

“ Floating point numbers are like piles of sand; every time���
 you move them around, you lose a little sand and pick up	

 a little dirt. ” — Brian Kernighan and P. J. Plauger	

Catastrophic Cancellation

A simple function.

Goal. Plot f (x) for -4 ⋅ 10-8 ≤ x ≤ 4 ⋅ 10-8.

6

Exact answer

€

f (x) = 1 − cos x
x2

Catastrophic Cancellation

A simple function.

Goal. Plot f (x) for -4 ⋅ 10-8 ≤ x ≤ 4 ⋅ 10-8.

7

€

f (x) = 1 − cos x
x2

IEEE 754 double precision answer

Catastrophic Cancellation

Ex. Evaluate fl(x) for x = 1.1e-8.
  Math.cos(x) = 0.99999999999999988897769753748434595763683319091796875.

  (1.0 - Math.cos(x)) = 1.1102e-16

  (1.0 - Math.cos(x)) / (x*x) = 0.9175

Catastrophic cancellation. Devastating loss of precision when small
numbers are computed from large numbers, which themselves are
subject to roundoff error.

8

nearest floating point value agrees with
exact answer to 16 decimal places.

inaccurate estimate of exact answer (6.05 ⋅ 10-17)

80% larger than exact answer (about 0.5)

public static double fl(double x) {
 return (1.0 - Math.cos(x)) / (x* x);
}

Numerical Catastrophes

Ariane 5 rocket. [June 4, 1996]
  10 year, $7 billion ESA project exploded after launch.
  64-bit float converted to 16 bit signed int.
  Unanticipated overflow.

Vancouver stock exchange. [November, 1983]
  Index undervalued by 44%.
  Recalculated index after each trade by adding change in price.
  22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]
  Failed to track scud; hit Army barracks, killed 28.
  Inaccuracy in measuring time in 1/20 of a second

since using 24 bit binary floating point.

9

Copyright, Arianespace

War Story

Bugs. Java Virtual Machine and compiler struggle with 2-1022.

Bugs identified and fixed. February, 2011.

10

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308!

public class RuntimeHang {
 public static void main(String[] args) {
 double d = Double.parseDouble("2.2250738585072012e-308");
 System.out.println(d);
 }
}

public class CompileHang {
 public static void main(String[] args) {
 double d = 2.2250738585072012e-308;
 System.out.println(d);
 }
}

Double.MIN_NORMAL!

should be converted to 2-1022

11

Gaussian Elimination

Ax = b

Linear System of Equations

Linear system of equations. N linear equations in N unknowns.

Fundamental problems in science and engineering.
  Chemical equilibrium.
  Linear and nonlinear optimization.
  Kirchoff's current and voltage laws.
  Hooke's law for finite element methods.
  Leontief's model of economic equilibrium.
  Numerical solutions to differential equations.
  …

12

0 x0 + 1 x1 + 1 x2 = 4
2 x0 + 4 x1 - 2 x2 = 2
0 x0 + 3 x1 + 15 x2 = 36

€

A =

0 1 1
2 4 −2
0 3 15

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, b =

4
2
36

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

matrix notation: find x such that Ax = b

Chemical Equilibrium

Ex. Combustion of propane.

Stoichiometric constraints.
  Carbon: 3x0 = x2.
  Hydrogen: 8x0 = 2x3.
  Oxygen: 2x1 = 2x2 + x3.
  Normalize: x0 = 1.

Remark. Stoichiometric coefficients tend to be small integers;
among first hints suggesting the atomic nature of matter.

13

x0C3H8 + x1O2 ⇒ x2CO2 + x3H2O

C3H8 + 5O2 ⇒ 3CO2 + 4H2O

conservation of mass

Kirchoff's Current Law

Ex. Find current flowing in each branch of a circuit.

Kirchoff's current law.
  10 = 1x0 + 25(x0 - x1) + 50 (x0 - x2).
  0 = 25(x1 - x0) + 30x1 + 1(x1 - x2).
  0 = 50(x2 - x0) + 1(x2 - x1) + 55x2.

Solution. x0 = 0.2449, x1 = 0.1114, x2 = 0.1166.

14

x0

x1

x2

conservation of electrical charge

Upper Triangular System of Equations

Upper triangular system. aij = 0 for i > j.

Back substitution. Solve by examining equations in reverse order.
  Equation 2: x2 = 24/12 = 2.
  Equation 1: x1 = 4 - x2 = 2.
  Equation 0: x0 = (2 - 4x1 + 2x2) / 2 = -1.

15

for (int i = N-1; i >= 0; i--) {
 double sum = 0.0;
 for (int j = i+1; j < N; j++)
 sum += A[i][j] * x[j];
 x[i] = (b[i] - sum) / A[i][i];
}

€

xi =
1
aii

bi − aij x j
j=i+1

N−1
∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2 x0 + 4 x1 - 2 x2 = 2
0 x0 + 1 x1 + 1 x2 = 4
0 x0 + 0 x1 + 12 x2 = 24

Gaussian Elimination

Gaussian elimination.
  Among oldest and most widely used solutions.
  Repeatedly apply row operations to make system upper triangular.
  Solve upper triangular system by back substitution.

Elementary row operations.
  Exchange row p and row q.
  Add a multiple α of row p to row q.

Key invariant. Row operations preserve solutions.

16

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⇒

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⇒

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

p

q

Gaussian Elimination: Row Operations

Elementary row operations.

17

0 x0 + 1 x1 + 1 x2 = 4
2 x0 + 4 x1 - 2 x2 = 2
0 x0 + 3 x1 + 15 x2 = 36

2 x0 + 4 x1 - 2 x2 = 2
0 x0 + 1 x1 + 1 x2 = 4
0 x0 + 3 x1 + 15 x2 = 36

2 x0 + 4 x1 - 2 x2 = 2
0 x0 + 1 x1 + 1 x2 = 4
0 x0 + 0 x1 + 12 x2 = 24

(interchange row 0 and 1)

(subtract 3x row 1 from row 2)

Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot app.

18

for (int p = 0; p < N; p++) {
 for (int i = p + 1; i < N; i++) {
 double alpha = A[i][p] / A[p][p];
 b[i] -= alpha * b[p];
 for (int j = p; j < N; j++)
 A[i][j] -= alpha * A[p][j];
 }
}

€

aij = aij −
aip
app

apj

bi = bi −
aip
app

bp

€

* * * * * *
0 * * * * *
0 0 * * * *
0 0 * * * *
0 0 * * * *
0 0 * * * *

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⇒

* * * * * *
0 * * * * *
0 0 * * * *
0 0 0 * * *
0 0 0 * * *
0 0 0 * * *

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

p

p

Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot app.

19

€

* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⇒

* * * * *
0 * * * *
0 * * * *
0 * * * *
0 * * * *

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⇒

* * * * *
0 * * * *
0 0 * * *
0 0 * * *
0 0 * * *

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⇒

* * * * *
0 * * * *
0 0 * * *
0 0 0 * *
0 0 0 * *

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⇒

* * * * *
0 * * * *
0 0 * * *
0 0 0 * *
0 0 0 0 *

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

for (int p = 0; p < N; p++) {
 for (int i = p + 1; i < N; i++) {
 double alpha = A[i][p] / A[p][p];
 b[i] -= alpha * b[p];
 for (int j = p; j < N; j++)
 A[i][j] -= alpha * A[p][j];
 }
}

Gaussian Elimination Example

20

-6 x3 + 0 x2 3 = + 1 x1 + -2 x0

9 x3 + 1 x2 4 = + 1 x1 + 1 x0

4 x3 + 1 x2 1 = + 0 x1 + 1 x0

7 x3 + 1 x2 2 = + -1 x1 + 2 x0

Gaussian Elimination Example

21

-6 x3 + 0 x2 3 = + 1 x1 + -2 x0

9 x3 + 1 x2 4 = + 1 x1 + 1 x0

4 x3 + 1 x2 1 = + 0 x1 + 1 x0

7 x3 + 1 x2 2 = + -1 x1 + 2 x0 -1 x3 + -1 x2 0 = + -1 x1 + 0 x0

2 x3 + 2 x2 5 = + 1 x1 + 0 x0

5 x3 + 0 x2 3 = + 1 x1 + 0 x0

Gaussian Elimination Example

22

2 x3 + 2 x2 5 = + 1 x1 + 0 x0

5 x3 + 0 x2 3 = + 1 x1 + 0 x0

4 x3 + 1 x2 1 = + 0 x1 + 1 x0

-1 x3 + -1 x2 0 = + -1 x1 + 0 x0

1 x3 + 1 x2 5 = + 0 x1 + 0 x0

4 x3 + -1 x2 3 = + 0 x1 + 0 x0

Gaussian Elimination Example

23

1 x3 + 1 x2 5 = + 0 x1 + 0 x0

4 x3 + -1 x2 3 = + 0 x1 + 0 x0

4 x3 + 1 x2 1 = + 0 x1 + 1 x0

-1 x3 + -1 x2 0 = + -1 x1 + 0 x0

5 x3 + 0 x2 8 = + 0 x1 + 0 x0

Gaussian Elimination Example

24

1 x3 + 1 x2 5 = + 0 x1 + 0 x0

5 x3 + 0 x2 8 = + 0 x1 + 0 x0

4 x3 + 1 x2 1 = + 0 x1 + 1 x0

-1 x3 + -1 x2 0 = + -1 x1 + 0 x0

x3 = 8/5
x2 = 5 - x3 = 17/5
x1 = 0 - x2 - x3 = -25/5
x0 = 1 - x2 - 4x3 = -44/5

Gaussian Elimination: Partial Pivoting

Remark. Previous code fails spectacularly if pivot app = 0.

25

15 x3 + 3 x1 33 = + 0 x0

0 x3 + 1 x1 1 = + 1 x0

-2 x3 + 2 x1 -2 = + 2 x0

15 x3 + 3 x1 33 = + 0 x0

0 x3 + 1 x1 1 = + 1 x0

-2 x3 + 0 x1 -4 = + 0 x0

Inf x3 + Nan x1 Inf = + 0 x0

0 x3 + 1 x1 1 = + 1 x0

-2 x3 + 0 x1 -4 = + 0 x0

Gaussian Elimination: Partial Pivoting

Partial pivoting. Swap row p with the row that has largest entry in
column p among rows i below the diagonal.

Q. What if pivot app = 0 while partial pivoting?
A. System has no solutions or infinitely many solutions.

26

// find pivot row
int max = p;
for (int i = p + 1; i < N; i++)
if (Math.abs(A[i][p]) > Math.abs(A[max][p]))
 max = i;

// swap rows p and max
double[] T = A[p]; A[p] = A[max]; A[max] = T;
double t = b[p]; b[p] = b[max]; b[max] = t;

€

* * * * * *
0 * * * * *
0 0 0 * * *
0 0 3 * * *
0 0 9 * * *
0 0 2 * * *

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

p

p

max

Gaussian Elimination with Partial Pivoting

27

public static double[] lsolve(double[][] A, double[] b) {
 int N = b.length;

 // Gaussian elimination
 for (int p = 0; p < N; p++) {

 // partial pivot
 int max = p;
 for (int i = p+1; i < N; i++)
 if (Math.abs(A[i][p]) > Math.abs(A[max][p]))
 max = i;
 double[] T = A[p]; A[p] = A[max]; A[max] = T;
 double t = b[p]; b[p] = b[max]; b[max] = t;

 // zero out entries of A and b using pivot A[p][p]
 for (int i = p+1; i < N; i++) {
 double alpha = A[i][p] / A[p][p];
 b[i] -= alpha * b[p];
 for (int j = p; j < N; j++)
 A[i][j] -= alpha * A[p][j];
 }
 }

 // back substitution
 double[] x = new double[N];
 for (int i = N-1; i >= 0; i--) {
 double sum = 0.0;
 for (int j = i+1; j < N; j++)
 sum += A[i][j] * x[j];
 x[i] = (b[i] - sum) / A[i][i];
 }
 return x;
}

~ N3/3 additions,
~ N3/3 multiplications

~ N2/2 additions,
~ N2/2 multiplications

28

Stability and Conditioning

Numerically-Unstable Algorithms

Stability. Algorithm fl(x) for computing f (x) is numerically stable
if fl(x) ≈ f (x + ε) for some small perturbation ε.

Ex 1. Numerically unstable way to compute

  fl(1.1e-8) = 0.9175.

Note. Numerically stable formula:

29

Nearly the right answer to nearly the right problem.

€

f (x) = 1 − cos x
x2

public static double fl(double x) {
 return (1.0 - Math.cos(x)) / (x* x);
}

true answer ≈ 1/2.

€

f (x) = 2 sin2 (x /2)
x2

Numerically-Unstable Algorithms

Stability. Algorithm fl(x) for computing f (x) is numerically stable
if fl(x) ≈ f (x + ε) for some small perturbation ε.

Ex 2. Gaussian elimination (w/o partial pivoting) can fail spectacularly.

Theorem. Partial pivoting improves numerical stability.

30

a x0 + 1 x1 = 1
1 x0 + 2 x1 = 3

1.0 1.0 partial pivoting

exact

1.0 0.0 no pivoting

x0 Algorithm x1

€

1-3a
1-2a ≈ 1

€

1
1-2a ≈ 1

a = 10-17

Nearly the right answer to nearly the right problem.

Ill-Conditioned Problems

Conditioning. Problem is well-conditioned if f (x) ≈ f (x + ε) for all small
perturbation ε.

Ex 1. arccos() and tan() functions.
  arccos(.99999991) ≈ 0.000425 tan(1.57078) ≈ 6.12490 × 105
  arccos(.99999992) ≈ 0.000400 tan(1.57079) ≈ 1.58058 × 104

Consequence. The following formula for computing the great circle
distance between (x1, y1) and (x2, y2) is inaccurate for nearby points.

31

Solution varies gradually as problem varies.

€

d = 60 arccos(sin x1 sin x2 + cos x1 cos x2 cos(y1 − y2))

very close to 1 when two points are close

Ill-Conditioned Problems

Conditioning. Problem is well-conditioned if f (x) ≈ f (x + ε) for all small
perturbation ε.

Ex 2. Hilbert matrix.
  Tiny perturbation to Hn makes it singular.
  Cannot solve H12 x = b using floating point.

Matrix condition number. [Turing, 1948] Widely-used concept for
detecting ill-conditioned linear systems.

32

Solution varies gradually as problem varies.

€

H4 =

1
1

1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Hilbert matrix

Numerically Solving an Initial Value ODE

Lorenz attractor.
  Idealized atmospheric model to describe turbulent flow.
  Convective rolls: warm fluid at bottom, rises to top, cools off,

and falls down.

Solution. No closed form solution for x(t), y(t), z(t).
Approach. Numerically solve ODE.

33

€

dx
dt = −10(x+y)
dy
dt = −xz + 28x − y
dz
dt = xy − 8

3 z

x = fluid flow velocity
y = ∇ temperature between ascending and descending currents
z = distortion of vertical temperature profile from linearity

Euler's Method

Euler's method. [to numerically solve initial value ODE]
  Choose Δt sufficiently small.
  Approximate function at time t by tangent line at t.
  Estimate value of function at time t + Δt according to tangent line.
  Increment time to t + Δt.
  Repeat.

Advanced methods. Use less computation to achieve desired accuracy.
  4th order Runge-Kutta: evaluate slope four times per step.
  Variable time step: automatically adjust timescale Δt.
  See COS 323.

34

€

xt+Δt = xt +Δt dx
dt (xt ,yt ,zt)

yt+Δt = yt +Δt dy
dt (xt ,yt ,zt)

zt+Δt = zt +Δt dz
dt (xt ,yt ,zt)

Lorenz Attractor: Java Implementation

35

public class Butterfly {

 public static double dx(double x, double y, double z)
 { return -10*(x - y); }

 public static double dy(double x, double y, double z)
 { return -x*z + 28*x - y; }

 public static double dz(double x, double y, double z)
 { return x*y – 8*z/3; }

 public static void main(String[] args) {
 double x = 0.0, y = 20.0, z = 25.0;
 double dt = 0.001;
 StdDraw.setXscale(-25, 25);
 StdDraw.setYscale(0, 50);

 while (true) {
 double xnew = x + dt * dx(x, y, z);
 double ynew = y + dt * dy(x, y, z);
 double znew = z + dt * dz(x, y, z);
 x = xnew; y = ynew; z = znew;
 StdDraw.point(x, z);
 }
 }
}

Euler's method

plot x vs. z

The Lorenz Attractor

36

% java Butterfly

(-25, 0)

(25, 50)

Butterfly Effect

Experiment.
  Initialize y = 20.01 instead of y = 20.
  Plot original trajectory in blue, perturbed one in magenta.
  What happens?

Ill-conditioning.
  Sensitive dependence on initial conditions.
  Property of system, not of numerical solution approach.

37

Predictability: does the flap of a butterfly's wings in Brazil set off a
tornado in Texas? — title of a 1972 talk by Edward Lorenz	

Stability and Conditioning

Accuracy depends on both stability and conditioning.
  Danger: apply unstable algorithm to well-conditioned problem.
  Danger: apply stable algorithm to ill-conditioned problem.
  Safe: apply stable algorithm to well-conditioned problem.

Numerical analysis. Art and science of designing numerically stable
algorithms for well-conditioned problems.

Lesson 1. Some algorithms are unsuitable for floating-point computation.
Lesson 2. Some problems are unsuitable to floating-point computation.

38

