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Applications of Scientific Computing 

Science and engineering challenges. 
  Fluid dynamics. 
  Seismic surveys. 
  Plasma dynamics. 
  Ocean circulation. 
  Electronics design. 
  Pharmaceutical design. 
  Human genome project. 
  Vehicle crash simulation. 
  Global climate simulation. 
  Nuclear weapons simulation. 
  Molecular dynamics simulation. 

Common features. 
  Problems tend to be continuous instead of discrete. 
  Algorithms must scale to handle huge problems. 
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Commercial applications. 
  Web search. 
  Financial modeling. 
  Computer graphics.  
  Digital audio and video. 
  Architecture walk-throughs. 
  Natural language processing. 
  Medical diagnostics (MRI, CAT). 



Floating Point 

IEEE 754 representation. 
  Used by all modern computers. 
  Scientific notation, but in binary. 
  Single precision:  float = 32 bits. 
  Double precision:  double = 64 bits. 

Ex.  Single precision representation of -0.453125. 
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1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

sign bit 8-bit exponent 23-bit significand 

125 1/2 + 1/4 + 1/16 = 0.8125 -1 

-1 × 2125 - 127 × 1.8125  =  -0.453125 

bias phantom bit 



Floating Point 

Remark.  Most real numbers are not representable, including π and 1/10. 

Roundoff error.  When result of calculation is not representable.  
Consequence.  Non-intuitive behavior for uninitiated. 

Financial computing.  Calculate 9% sales tax on a 50¢ phone call. 
Banker's rounding.  Round to nearest integer, to even integer if tie. 
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if (0.1 + 0.2 == 0.3) {  /* false */  } 
if (0.1 + 0.3 == 0.4) {  /* true  */  } 

double a1 = 1.14 * 75;      // 85.49999999999999  
double a2 = Math.round(a1); // 85 

double b1 = 1.09 * 50;      // 54.50000000000001   
double b2 = Math.round(b1); // 55 SEC violation (!) 

you lost 1¢ 



Floating Point 

Remark.  Most real numbers are not representable, including π and 1/10. 

Roundoff error.  When result of calculation is not representable.  
Consequence.  Non-intuitive behavior for uninitiated. 
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if (0.1 + 0.2 == 0.3) {  /* false */  } 
if (0.1 + 0.3 == 0.4) {  /* true  */  } 

“  Floating point numbers are like piles of sand; every time���
    you move them around, you lose a little sand and pick up	


    a little dirt. ” — Brian Kernighan and P. J. Plauger	





Catastrophic Cancellation 

A simple function. 

Goal.  Plot f (x) for  -4 ⋅ 10-8  ≤  x  ≤  4 ⋅ 10-8. 
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Exact answer 

€ 

f (x)  =  1 − cos x
x2



Catastrophic Cancellation 

A simple function. 

Goal.  Plot f (x) for  -4 ⋅ 10-8  ≤  x  ≤  4 ⋅ 10-8. 
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€ 

f (x)  =  1 − cos x
x2

IEEE 754 double precision answer 



Catastrophic Cancellation 

Ex.  Evaluate fl(x) for x = 1.1e-8. 
  Math.cos(x) = 0.99999999999999988897769753748434595763683319091796875. 

  (1.0 - Math.cos(x)) = 1.1102e-16 

  (1.0 - Math.cos(x)) / (x*x) = 0.9175 

Catastrophic cancellation.  Devastating loss of precision when small 
numbers are computed from large numbers, which themselves are 
subject to roundoff error. 
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nearest floating point value agrees with 
exact answer to 16 decimal places. 

inaccurate estimate of exact answer (6.05 ⋅ 10-17) 

80% larger than exact answer (about 0.5) 

public static double fl(double x) { 
   return (1.0 - Math.cos(x)) / (x* x); 
} 



Numerical Catastrophes 

Ariane 5 rocket.  [June 4, 1996] 
  10 year, $7 billion ESA project exploded after launch. 
  64-bit float converted to 16 bit signed int. 
  Unanticipated overflow. 

Vancouver stock exchange.  [November, 1983] 
  Index undervalued by 44%. 
  Recalculated index after each trade by adding change in price. 
  22 months of accumulated truncation error. 

Patriot missile accident.  [February 25, 1991] 
  Failed to track scud; hit Army barracks, killed 28. 
  Inaccuracy in measuring time in 1/20 of a second 

since using 24 bit binary floating point. 
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Copyright, Arianespace 



War Story 

Bugs.  Java Virtual Machine and compiler struggle with 2-1022.  

Bugs identified and fixed.  February, 2011. 
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http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308!

public class RuntimeHang { 
   public static void main(String[] args) { 
      double d = Double.parseDouble("2.2250738585072012e-308"); 
      System.out.println(d); 
   } 
} 

public class CompileHang { 
   public static void main(String[] args) { 
      double d = 2.2250738585072012e-308; 
      System.out.println(d); 
   } 
} 

Double.MIN_NORMAL!

should be converted to 2-1022 
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Gaussian Elimination 

Ax = b 



Linear System of Equations 

Linear system of equations.  N linear equations in N unknowns. 

Fundamental problems in science and engineering. 
  Chemical equilibrium. 
  Linear and nonlinear optimization. 
  Kirchoff's current and voltage laws. 
  Hooke's law for finite element methods. 
  Leontief's model of economic equilibrium. 
  Numerical solutions to differential equations. 
  … 
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0 x0 + 1 x1 +  1 x2 =  4   
2 x0 + 4 x1 -  2 x2 =  2   
0 x0 + 3 x1 +  15 x2 =  36   
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matrix notation:  find x such that Ax = b 



Chemical Equilibrium 

Ex.  Combustion of propane. 

Stoichiometric constraints. 
  Carbon:  3x0 = x2. 
  Hydrogen:  8x0 = 2x3. 
  Oxygen:  2x1 = 2x2 + x3. 
  Normalize:  x0 = 1. 

Remark.  Stoichiometric coefficients tend to be small integers; 
among first hints suggesting the atomic nature of matter. 
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x0C3H8 + x1O2   ⇒   x2CO2 + x3H2O 

C3H8 + 5O2   ⇒   3CO2 + 4H2O 

conservation of mass  



Kirchoff's Current Law 

Ex.  Find current flowing in each branch of a circuit. 

Kirchoff's current law. 
  10  =  1x0 + 25(x0 - x1) + 50 (x0 - x2). 
  0  =  25(x1 - x0) + 30x1 + 1(x1 - x2). 
  0  =  50(x2 - x0) + 1(x2 - x1) + 55x2. 

Solution.  x0 = 0.2449, x1 = 0.1114, x2 = 0.1166. 

14 

x0 

x1 

x2 

conservation of electrical charge 



Upper Triangular System of Equations 

Upper triangular system.  aij = 0 for i > j. 

Back substitution.  Solve by examining equations in reverse order. 
  Equation 2:  x2 = 24/12  =  2. 
  Equation 1:  x1 = 4 - x2  =  2. 
  Equation 0:  x0 = (2 - 4x1  + 2x2) / 2  =  -1. 
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for (int i = N-1; i >= 0; i--) { 
   double sum = 0.0; 
   for (int j = i+1; j < N; j++) 
      sum += A[i][j] * x[j]; 
   x[i] = (b[i] - sum) / A[i][i]; 
}  

€ 

xi =
1
aii

bi − aij x j
j=i+1

N−1
∑

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

2 x0 +  4 x1 -  2 x2 =  2   
0 x0 +  1 x1 +  1 x2 =  4   
0 x0 +  0 x1 +  12 x2 =  24   



Gaussian Elimination 

Gaussian elimination. 
  Among oldest and most widely used solutions. 
  Repeatedly apply row operations to make system upper triangular. 
  Solve upper triangular system by back substitution. 

Elementary row operations. 
  Exchange row p and row q. 
  Add a multiple α of row p to row q. 

Key invariant.   Row operations preserve solutions. 
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Gaussian Elimination:  Row Operations 

Elementary row operations. 
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0 x0 + 1 x1 +  1 x2 =  4   
2 x0 + 4 x1 -  2 x2 =  2   
0 x0 + 3 x1 +  15 x2 =  36   

2 x0 + 4 x1 -  2 x2 =  2   
0 x0 + 1 x1 +  1 x2 =  4   
0 x0 + 3 x1 +  15 x2 =  36   

2 x0 +  4 x1 -  2 x2 =  2   
0 x0 +  1 x1 +  1 x2 =  4   
0 x0 +  0 x1 +  12 x2 =  24   

(interchange row 0 and 1) 

(subtract 3x row 1 from row 2) 



Gaussian Elimination:  Forward Elimination 

Forward elimination.  Apply row operations to make upper triangular. 

Pivot.  Zero out entries below pivot app. 
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for (int p = 0; p < N; p++) { 
   for (int i = p + 1; i < N; i++) { 
      double alpha = A[i][p] / A[p][p]; 
      b[i] -= alpha * b[p]; 
      for (int j = p; j < N; j++) 
         A[i][j] -= alpha * A[p][j]; 
   } 
} 

€ 

aij = aij −
aip
app

apj

bi = bi −
aip
app
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Gaussian Elimination:  Forward Elimination 

Forward elimination.  Apply row operations to make upper triangular. 

Pivot.  Zero out entries below pivot app. 
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for (int p = 0; p < N; p++) { 
   for (int i = p + 1; i < N; i++) { 
      double alpha = A[i][p] / A[p][p]; 
      b[i] -= alpha * b[p]; 
      for (int j = p; j < N; j++) 
         A[i][j] -= alpha * A[p][j]; 
   } 
} 



Gaussian Elimination Example 
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-6 x3 + 0 x2 3 = + 1 x1 + -2 x0 

9 x3 + 1 x2 4 = + 1 x1 + 1 x0 

4 x3 + 1 x2 1 = + 0 x1 + 1 x0 

7 x3 + 1 x2 2 = + -1 x1 + 2 x0 



Gaussian Elimination Example 
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-6 x3 + 0 x2 3 = + 1 x1 + -2 x0 

9 x3 + 1 x2 4 = + 1 x1 + 1 x0 

4 x3 + 1 x2 1 = + 0 x1 + 1 x0 

7 x3 + 1 x2 2 = + -1 x1 + 2 x0 -1 x3 + -1 x2 0 = + -1 x1 + 0 x0 

2 x3 + 2 x2 5 = + 1 x1 + 0 x0 

5 x3 + 0 x2 3 = + 1 x1 + 0 x0 



Gaussian Elimination Example 
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2 x3 + 2 x2 5 = + 1 x1 + 0 x0 

5 x3 + 0 x2 3 = + 1 x1 + 0 x0 

4 x3 + 1 x2 1 = + 0 x1 + 1 x0 

-1 x3 + -1 x2 0 = + -1 x1 + 0 x0 

1 x3 + 1 x2 5 = + 0 x1 + 0 x0 

4 x3 + -1 x2 3 = + 0 x1 + 0 x0 



Gaussian Elimination Example 
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1 x3 + 1 x2 5 = + 0 x1 + 0 x0 

4 x3 + -1 x2 3 = + 0 x1 + 0 x0 

4 x3 + 1 x2 1 = + 0 x1 + 1 x0 

-1 x3 + -1 x2 0 = + -1 x1 + 0 x0 

5 x3 + 0 x2 8 = + 0 x1 + 0 x0 



Gaussian Elimination Example 
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1 x3 + 1 x2 5 = + 0 x1 + 0 x0 

5 x3 + 0 x2 8 = + 0 x1 + 0 x0 

4 x3 + 1 x2 1 = + 0 x1 + 1 x0 

-1 x3 + -1 x2 0 = + -1 x1 + 0 x0 

x3    =      8/5 
x2   =  5 - x3  =    17/5 
x1   =  0 - x2 - x3  =  -25/5 
x0  =  1 - x2 - 4x3  =  -44/5 



Gaussian Elimination:  Partial Pivoting 

Remark.  Previous code fails spectacularly if pivot app = 0. 
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15 x3 + 3 x1 33 = + 0 x0 

0 x3 + 1 x1 1 = + 1 x0 

-2 x3 + 2 x1 -2 = + 2 x0 

15 x3 + 3 x1 33 = + 0 x0 

0 x3 + 1 x1 1 = + 1 x0 

-2 x3 + 0 x1 -4 = + 0 x0 

Inf x3 + Nan x1 Inf = + 0 x0 

0 x3 + 1 x1 1 = + 1 x0 

-2 x3 + 0 x1 -4 = + 0 x0 



Gaussian Elimination:  Partial Pivoting 

Partial pivoting. Swap row p with the row that has largest entry in 
column p among rows i below the diagonal. 

Q. What if pivot app = 0 while partial pivoting? 
A.  System has no solutions or infinitely many solutions. 
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// find pivot row  
int max = p; 
for (int i = p + 1; i < N; i++) 
if (Math.abs(A[i][p]) > Math.abs(A[max][p])) 
   max = i; 

// swap rows p and max 
double[] T = A[p]; A[p] = A[max]; A[max] = T; 
double   t = b[p]; b[p] = b[max]; b[max] = t; 
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Gaussian Elimination with Partial Pivoting 
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public static double[] lsolve(double[][] A, double[] b) { 
   int N = b.length; 

   // Gaussian elimination 
   for (int p = 0; p < N; p++) { 

      // partial pivot 
      int max = p; 
      for (int i = p+1; i < N; i++) 
          if (Math.abs(A[i][p]) > Math.abs(A[max][p])) 
             max = i; 
      double[] T = A[p]; A[p] = A[max]; A[max] = T; 
      double   t = b[p]; b[p] = b[max]; b[max] = t; 

      // zero out entries of A and b using pivot A[p][p] 
      for (int i = p+1; i < N; i++) { 
         double alpha = A[i][p] / A[p][p]; 
         b[i] -= alpha * b[p]; 
         for (int j = p; j < N; j++) 
            A[i][j] -= alpha * A[p][j]; 
      } 
   } 

   // back substitution 
   double[] x = new double[N]; 
   for (int i = N-1; i >= 0; i--) { 
      double sum = 0.0; 
      for (int j = i+1; j < N; j++) 
         sum += A[i][j] * x[j]; 
      x[i] = (b[i] - sum) / A[i][i]; 
   } 
   return x; 
} 

~ N3/3 additions, 
~ N3/3 multiplications 

~ N2/2 additions, 
~ N2/2 multiplications 
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Stability and Conditioning 



Numerically-Unstable Algorithms 

Stability.  Algorithm fl(x) for computing f (x) is numerically stable 
if fl(x) ≈  f (x + ε) for some small perturbation ε. 

Ex 1.  Numerically unstable way to compute 

  fl(1.1e-8) = 0.9175. 

Note.  Numerically stable formula: 
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Nearly the right answer to nearly the right problem. 

€ 

f (x)  =  1 − cos x
x2

public static double fl(double x) { 
   return (1.0 - Math.cos(x)) / (x* x); 
} 

true answer ≈ 1/2. 

€ 

f (x)  =  2 sin2 (x /2)
x2



Numerically-Unstable Algorithms 

Stability.  Algorithm fl(x) for computing f (x) is numerically stable 
if fl(x) ≈  f (x + ε) for some small perturbation ε. 

Ex 2.  Gaussian elimination (w/o partial pivoting) can fail spectacularly.  

Theorem.  Partial pivoting improves numerical stability. 
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a x0 + 1 x1 =  1   
1 x0 + 2 x1 =  3   

1.0 1.0 partial pivoting 

exact 

1.0 0.0 no pivoting 

x0 Algorithm x1 
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1-3a
1-2a ≈ 1

€ 

1
1-2a ≈ 1

a = 10-17 

Nearly the right answer to nearly the right problem. 



Ill-Conditioned Problems 

Conditioning.  Problem is well-conditioned if f (x)  ≈  f (x + ε) for all small 
perturbation ε. 

Ex 1.  arccos() and tan() functions. 
  arccos(.99999991) ≈ 0.000425     tan(1.57078) ≈ 6.12490 × 105 
  arccos(.99999992) ≈ 0.000400     tan(1.57079) ≈ 1.58058 × 104 

Consequence.  The following formula for computing the great circle 
distance between (x1, y1) and (x2, y2) is inaccurate for nearby points. 
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Solution varies gradually as problem varies. 

€ 

d =  60 arccos(sin x1 sin x2 + cos x1 cos x2 cos(y1 − y2 ) )

very close to 1 when two points are close 



Ill-Conditioned Problems 

Conditioning.  Problem is well-conditioned if f (x)  ≈  f (x + ε) for all small 
perturbation ε. 

Ex 2.  Hilbert matrix. 
  Tiny perturbation to Hn makes it singular. 
  Cannot solve H12 x = b using floating point. 

Matrix condition number.  [Turing, 1948]  Widely-used concept for 
detecting ill-conditioned linear systems. 
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Solution varies gradually as problem varies. 
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Hilbert matrix 



Numerically Solving an Initial Value ODE 

Lorenz attractor. 
  Idealized atmospheric model to describe turbulent flow. 
  Convective rolls:  warm fluid at bottom, rises to top, cools off, 

and falls down. 

Solution.  No closed form solution for x(t), y(t), z(t). 
Approach.  Numerically solve ODE. 
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€ 

dx
dt = −10(x+y)
dy
dt = −xz + 28x − y
dz
dt = xy − 8

3 z

x = fluid flow velocity 
y = ∇ temperature between ascending and descending currents 
z = distortion of vertical temperature profile from linearity 



Euler's Method 

Euler's method.  [to numerically solve initial value ODE] 
  Choose Δt sufficiently small. 
  Approximate function at time t by tangent line at t.  
  Estimate value of function at time t + Δt according to tangent line. 
  Increment time to t + Δt.  
  Repeat. 

Advanced methods.  Use less computation to achieve desired accuracy. 
  4th order Runge-Kutta:  evaluate slope four times per step.   
  Variable time step:  automatically adjust timescale Δt. 
  See COS 323. 
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€ 

xt+Δt = xt +Δt dx
dt (xt ,yt ,zt )

yt+Δt = yt +Δt dy
dt (xt ,yt ,zt )

zt+Δt = zt +Δt dz
dt (xt ,yt ,zt )



Lorenz Attractor:  Java Implementation 
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public class Butterfly { 

   public static double dx(double x, double y, double z) 
   { return -10*(x - y);     } 

   public static double dy(double x, double y, double z) 
   { return -x*z + 28*x - y; } 

   public static double dz(double x, double y, double z) 
   { return x*y – 8*z/3;     } 

   public static void main(String[] args) { 
      double x = 0.0, y = 20.0, z = 25.0; 
      double dt = 0.001; 
      StdDraw.setXscale(-25, 25); 
      StdDraw.setYscale(  0, 50); 

      while (true) { 
         double xnew = x + dt * dx(x, y, z); 
         double ynew = y + dt * dy(x, y, z); 
         double znew = z + dt * dz(x, y, z); 
         x = xnew; y = ynew; z = znew; 
         StdDraw.point(x, z);  
      } 
   } 
} 

Euler's method 

plot x vs. z 



The Lorenz Attractor 
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% java Butterfly 

(-25, 0) 

(25, 50) 



Butterfly Effect 

Experiment. 
  Initialize y = 20.01 instead of y = 20. 
  Plot original trajectory in blue, perturbed one in magenta. 
  What happens? 

Ill-conditioning. 
  Sensitive dependence on initial conditions. 
  Property of system, not of numerical solution approach. 
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Predictability:  does the flap of a butterfly's wings in Brazil set off a 
tornado in Texas? — title of a 1972 talk by Edward Lorenz	





Stability and Conditioning 

Accuracy depends on both stability and conditioning. 
  Danger:  apply unstable algorithm to well-conditioned problem. 
  Danger:  apply stable algorithm to ill-conditioned problem. 
  Safe:  apply stable algorithm to well-conditioned problem. 

Numerical analysis.  Art and science of designing numerically stable 
algorithms for well-conditioned problems. 

Lesson 1.  Some algorithms are unsuitable for floating-point computation. 
Lesson 2.  Some problems are unsuitable to floating-point computation. 
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