Commercial applications.

Financial modeling.Computer graphics.

Digital audio and video.

Architecture walk-throughs.

Natural language processing.
Medical diagnostics (MRI, CAT).

2

Web search.

9. Scientific Computing

Science and engineering challenges.

- Fluid dynamics.
- Seismic surveys.
- Plasma dynamics.
- Ocean circulation.
- Electronics design.
- Pharmaceutical design.
- Human genome project.
- Vehicle crash simulation.
- Global climate simulation.
- Nuclear weapons simulation.
- Molecular dynamics simulation.

Common features.

3

- Problems tend to be continuous instead of discrete.
- Algorithms must scale to handle huge problems.

Introduction to Computer Science in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 4/16/11 9:11 AM

Floating Point

IEEE 754 representation.

- Used by all modern computers.
- Scientific notation, but in binary.
- Single precision: float = 32 bits.
- Double precision: double = 64 bits.
- Ex. Single precision representation of -0.453125.

sign bit 8-bit exponent ↓ ↓						23-bit significand ↓																									
1	0	1	1	1	1	1	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-1				12	25									1/	2	+ 1	./4	+	1/	/16	=	Ο.	812	25							

bias phantom bit

$$\downarrow \qquad \downarrow$$

-1 x 2^{125 - 127} x 1.8125 = -0.453125

Floating Point

Remark. Most real numbers are not representable, including π and 1/10.

Roundoff error. When result of calculation is not representable. Consequence. Non-intuitive behavior for uninitiated.

if (0.1 + 0.2 == 0.3) { /* false */ }
if (0.1 + 0.3 == 0.4) { /* true */ }

Financial computing. Calculate 9% sales tax on a 50¢ phone call. Banker's rounding. Round to nearest integer, to even integer if tie.

double a1 = 1.14 * 75; // 85.49999999999999
double a2 = Math.round(a1); // 85 you lost 1¢
double b1 = 1.09 * 50; // 54.500000000001
double b2 = Math.round(b1); // 55 SEC violation(!)

Floating Point

Remark. Most real numbers are not representable, including π and 1/10.

Roundoff error. When result of calculation is not representable. Consequence. Non-intuitive behavior for uninitiated.

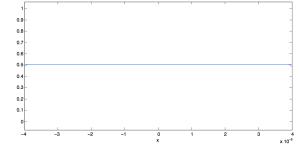
if (0.1 + 0.2 == 0.3) { /* false */ }
if (0.1 + 0.3 == 0.4) { /* true */ }

Floating point numbers are like piles of sand; every time you move them around, you lose a little sand and pick up a little dirt. " — Brian Kernighan and P. J. Plauger

5

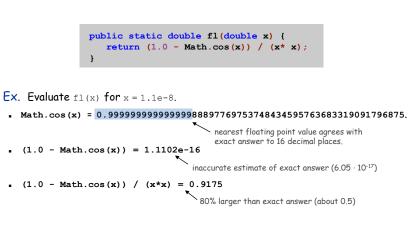
A simple function.
$$f(x) = \frac{1 - \cos x}{x^2}$$

Goal. Plot f(x) for $-4 \cdot 10^{-8} \le x \le 4 \cdot 10^{-8}$.



Exact answer

Catastrophic Cancellation

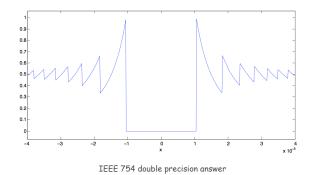


Catastrophic cancellation. Devastating loss of precision when small numbers are computed from large numbers, which themselves are subject to roundoff error.

A simple function.

 $f(x) = \frac{1 - \cos x}{r^2}$

Goal. Plot f(x) for $-4 \cdot 10^{-8} \le x \le 4 \cdot 10^{-8}$.



7

War Story

Ariane 5 rocket. [June 4, 1996]

- 10 year, \$7 billion ESA project exploded after launch.
- 64-bit float converted to 16 bit signed int.
- Unanticipated overflow.

Vancouver stock exchange. [November, 1983]

- Index undervalued by 44%.
- Recalculated index after each trade by adding change in price.
- 22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]

- Failed to track scud; hit Army barracks, killed 28.
- Inaccuracy in measuring time in 1/20 of a second since using 24 bit binary floating point.

9

11

Copyright, Arianespa

Bugs. Java Virtual Machine and compiler	struggle with 2 ⁻¹⁰²² .
<pre>public class RuntimeHang { public static void main(String[] args double d = Double.parseDouble("2.2 System.out.println(d); } }</pre>	
<pre>public class CompileHang { public static void main(String[] args double d = 2.2250738585072012e-308 System.out.println(d); } }</pre>	

Bugs identified and fixed. February, 2011. http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308

Linear System of Equations

Linear system of equations. N linear equations in N unknowns.

$0 x_0 + 1 x_1 + 1 x_2$	=	4	[0 1 1] [4]
$2 x_0 + 4 x_1 - 2 x_2$			$A = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 2 \\ 36 \end{bmatrix}$
$0 x_0 + 3 x_1 + 15 x_2$	=	36	[0 3 15] [36]

matrix notation: find x such that Ax = b

Fundamental problems in science and engineering.

- Chemical equilibrium.
- Linear and nonlinear optimization.
- Kirchoff's current and voltage laws.
- Hooke's law for finite element methods.
- Leontief's model of economic equilibrium.
- Numerical solutions to differential equations.
- ...

Gaussian Elimination

Ax = b

Ex. Combustion of propane.

$$x_0C_3H_8 + x_1O_2 \implies x_2CO_2 + x_3H_2O$$

Stoichiometric constraints.

- $3x_0 = x_2$. Carbon: • Hydrogen: $8x_0 = 2x_3$. • Oxygen: $2x_1 = 2x_2 + x_3$. conservation of mass
- Normalize: $x_0 = 1$.

 $C_3H_8 + 5O_2 \Rightarrow 3CO_2 + 4H_2O$

Remark. Stoichiometric coefficients tend to be small integers; among first hints suggesting the atomic nature of matter.

Upper Triangular System of Equations

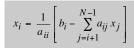
Upper triangular system. $a_{ij} = 0$ for i > j.

 $2 x_0 + 4 x_1 - 2 x_2 = 2$

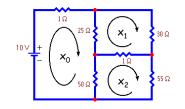
Back substitution. Solve by examining equations in reverse order.

- Equation 2: x₂ = 24/12 = 2.
- Equation 1: x₁ = 4 x₂ = 2.
- Equation 0: $x_0 = (2 4x_1 + 2x_2) / 2 = -1$.

for (int i = N-1; i >= 0; i--) { double sum = 0.0; for (int j = i+1; j < N; j++)</pre> sum += A[i][j] * x[j]; x[i] = (b[i] - sum) / A[i][i];}



Ex. Find current flowing in each branch of a circuit.



Kirchoff's current law.

• 10 = $1x_0 + 25(x_0 - x_1) + 50(x_0 - x_2)$.

Solution. $x_0 = 0.2449$, $x_1 = 0.1114$, $x_2 = 0.1166$.

 $0 = 25(x_1 - x_0) + 30x_1 + 1(x_1 - x_2).$

 $0 = 50(x_2 - x_0) + 1(x_2 - x_1) + 55x_2$

conservation of electrical charge

14

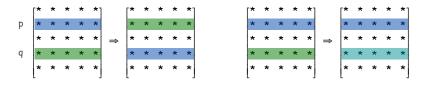
Gaussian Elimination

Gaussian elimination.

- Among oldest and most widely used solutions.
- Repeatedly apply row operations to make system upper triangular.
- Solve upper triangular system by back substitution.

Elementary row operations.

- Exchange row p and row q.
- Add a multiple α of row p to row q.



Key invariant. Row operations preserve solutions.

Elementary row operations.

 $0 x_{0} + 1 x_{1} + 1 x_{2} = 4$ $2 x_{0} + 4 x_{1} - 2 x_{2} = 2$ $0 x_{0} + 3 x_{1} + 15 x_{2} = 36$ (interchange row 0 and 1) $2 x_{0} + 4 x_{1} - 2 x_{2} = 2$ $0 x_{0} + 1 x_{1} + 1 x_{2} = 4$ $0 x_{0} + 3 x_{1} + 15 x_{2} = 36$ (subtract 3x row 1 from row 2) $2 x_{0} + 4 x_{1} - 2 x_{2} = 2$ $0 x_{0} + 1 x_{1} + 1 x_{2} = 4$ $0 x_{0} + 0 x_{1} + 1 x_{2} = 4$

Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot app.

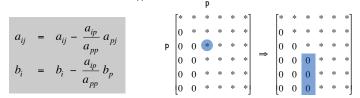
	*	*	*	*	*		0	*	*	*	*		0	*	*	*	*		0	*	*	*	*		0	*	*	*	*
	*	*	*	*	*	⇒	0	*	*	*	*	\Rightarrow	0	0	*	*	*	\Rightarrow	0	0	*	*	*	\Rightarrow	0	0	*	*	*
	*	*	*	*	*		0	*	*	*	*		0	0	*	*	*		0	0	0	*	*		0	0	0	*	*
l	*	*	*	*	*		0	*	*	*	*		0	0	*	*	*		0	0	0	*	*		0	0	0	0	*

```
for (int p = 0; p < N; p++) {
   for (int i = p + 1; i < N; i++) {
      double alpha = A[i][p] / A[p][p];
      b[i] -= alpha * b[p];
      for (int j = p; j < N; j++)
            A[i][j] -= alpha * A[p][j];
   }
}</pre>
```

Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot app.



```
for (int p = 0; p < N; p++) {
  for (int i = p + 1; i < N; i++) {
    double alpha = A[i][p] / A[p][p];
    b[i] -= alpha * b[p];
    for (int j = p; j < N; j++)
        A[i][j] -= alpha * A[p][j];
}</pre>
```

Gaussian Elimination Example

1 × ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
2 x ₀	+	-1 × ₁	+	1 x ₂	+	7 x ₃	=	2
-2 x ₀	+	1 × ₁	+	0 x ₂	+	-6 x ₃	=	3
1 × ₀	+	1 x ₁	+	1 x ₂	+	9 x ₃	=	4

17

Gaussian Elimination Example

				1 x ₂				1
				-1 x ₂				0
0 x ₀		1 × ₁		2 x ₂		2 x ₃		5
0 x ₀	+	1 × ₁	+	0 x ₂	+	5 x ₃	=	3

-	0 x ₁	_	-	1
•	-1 x ₁	-	•	0
0 x ₀	0 x ₁	1 x ₂	1 × ₃	5
0 x ₀	0 x ₁	-1 x ₂	4 x ₃	3

Gaussian Elimination Example

1 × ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
•		-		-1 x ₂		•		0
				1 x ₂				5
0 × ₀		0 x ₁		0 x ₂		5 x ₃		8

Gaussian Elimination Example

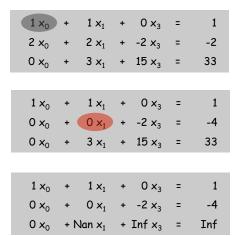
22

24

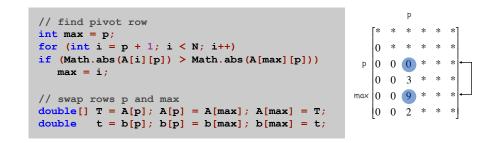
1 × ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
0 x ₀	+	-1 ×11	+	-1 x ₂	+	-1 x ₃	=	0
0 x ₀	+	0 x ₁	+	1 x ₂	+	1 x ₃	=	5
0 x ₀	+	0 x ₁	+	0 x ₂	+	5 x ₃	=	8

\mathbf{x}_3		= 8/	5	
\mathbf{x}_2	=	5 - x ₃	=	17/5
\mathbf{x}_1^-	=	$0 - x_2 - x_3$	=	-25/5
\mathbf{x}_0	=	$1 - x_2 - 4x_3$	=	-44/5

Remark. Previous code fails spectacularly if pivot $a_{pp} = 0$.

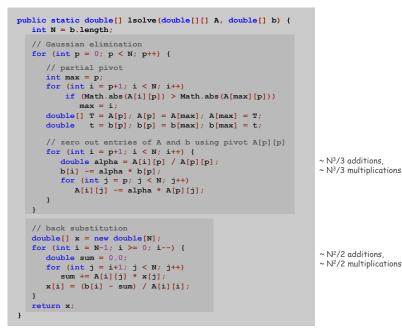


Partial pivoting. Swap row p with the row that has largest entry in column p among rows i below the diagonal.



Q. What if pivot $a_{pp} = 0$ while partial pivoting? A. System has no solutions or infinitely many solutions.

Gaussian Elimination with Partial Pivoting



Stability and Conditioning

~ N²/2 additions. ~ N²/2 multiplications

27

25

Stability. Algorithm fl(x) for computing f(x) is numerically stable if fl(x) ~ $f(x + \varepsilon)$ for some small perturbation ε .

Nearly the right answer to nearly the right problem.

Ex 1. Numerically unstable way to compute $f(x) = \frac{1 - \cos x}{x^2}$ public static double fl(double x) { return (1.0 - Math.cos(x)) / (x* x); } • fl(1.1e-8) = 0.9175. True answer = 1/2. Note. Numerically stable formula: $f(x) = \frac{2\sin^2(x/2)}{x^2}$

Ill-Conditioned Problems

Conditioning. Problem is well-conditioned if $f(x) \approx f(x+\varepsilon)$ for all small perturbation ε .

Solution varies gradually as problem varies.

 $E \times 1$. arccos() and tan() functions.

- $\arccos(.99999991) \approx 0.000425$ $\tan(1.57078) \approx 6.12490 \times 10^5$
- $\arccos(.99999992) \approx 0.000400$ $\tan(1.57079) \approx 1.58058 \times 10^4$

Consequence. The following formula for computing the great circle distance between (x_1, y_1) and (x_2, y_2) is inaccurate for nearby points.

$$d = 60 \arccos(\sin x_1 \sin x_2 + \cos x_1 \cos x_2 \cos(y_1 - y_2))$$

Stability. Algorithm fl(x) for computing f(x) is numerically stable if fl(x) ~ $f(x + \varepsilon)$ for some small perturbation ε .

Nearly the right answer to nearly the right problem.

Ex 2. Gaussian elimination (w/o partial pivoting) can fail spectacularly.

 $a = 10^{-17}$ $a x_0 + 1 x_1 = 1$ $1 x_0 + 2 x_1 = 3$

Algorithm	× ₀	x ₁
no pivoting	0.0	1.0
partial pivoting	1.0	1.0
exact	$\frac{1}{1-2a} \approx 1$	$\frac{1-3a}{1-2a} \thickapprox 1$

Theorem. Partial pivoting improves numerical stability.

Ill-Conditioned Problems

Conditioning. Problem is well-conditioned if $f(x) \approx f(x + \varepsilon)$ for all small perturbation ε .

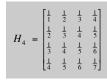
Solution varies gradually as problem varies.

Ex 2. Hilbert matrix.

29

31

Tiny perturbation to H_n makes it singular.
 Cannot solve H₁₂ x = b using floating point.

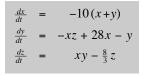


Hilbert matrix

Matrix condition number. [Turing, 1948] Widely-used concept for detecting ill-conditioned linear systems.

Lorenz attractor.

- Idealized atmospheric model to describe turbulent flow.
- Convective rolls: warm fluid at bottom, rises to top, cools off, and falls down.



x = fluid flow velocity

 \boldsymbol{y} = $\boldsymbol{\nabla}$ temperature between ascending and descending currents

z = distortion of vertical temperature profile from linearity

Solution. No closed form solution for x(t), y(t), z(t). Approach. Numerically solve ODE.

Euler's method. [to numerically solve initial value ODE]

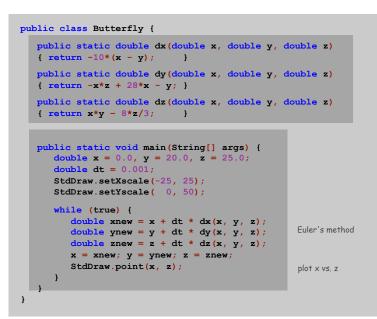
- Choose Δt sufficiently small.
- Approximate function at time t by tangent line at t.
- Estimate value of function at time t + Δt according to tangent line.
- Increment time to t + Δ t.
- 🛯 Repeat.

 $\begin{aligned} x_{t+\Delta t} &= x_t + \Delta t \; \frac{dx}{dt} \left(x_t, y_t, z_t \right) \\ y_{t+\Delta t} &= y_t + \Delta t \; \frac{dy}{dt} \left(x_t, y_t, z_t \right) \\ z_{t+\Delta t} &= z_t + \Delta t \; \frac{dz}{dt} \left(x_t, y_t, z_t \right) \end{aligned}$

Advanced methods. Use less computation to achieve desired accuracy.

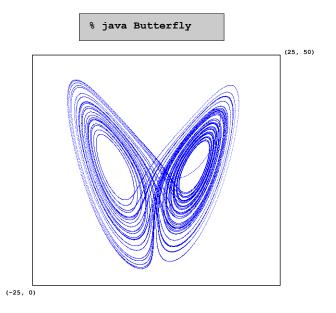
- 4th order Runge-Kutta: evaluate slope four times per step.
- Variable time step: automatically adjust timescale ${\timescale}\ \Delta t.$
- See COS 323.

Lorenz Attractor: Java Implementation



The Lorenz Attractor

34



Experiment.

- Initialize y = 20.01 instead of y = 20.
- Plot original trajectory in blue, perturbed one in magenta.
- What happens?

Ill-conditioning.

- Sensitive dependence on initial conditions.
- Property of system, not of numerical solution approach.

Predictability: does the flap of a butterfly's wings in Brazil set off a tornado in Texas? — title of a 1972 talk by Edward Lorenz

37

Accuracy depends on both stability and conditioning.

- Danger: apply unstable algorithm to well-conditioned problem.
- Danger: apply stable algorithm to ill-conditioned problem.
- Safe: apply stable algorithm to well-conditioned problem.

Numerical analysis. Art and science of designing numerically stable algorithms for well-conditioned problems.

Lesson 1. Some algorithms are unsuitable for floating-point computation. Lesson 2. Some problems are unsuitable to floating-point computation.