
4.3 Stacks and Queues

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 4/2/11 10:56 AM	
 2

Data Types and Data Structures

Data types. Set of values and operations on those values.
  Some are built into the Java language: int, double[], String, …
  Most are not: Complex, Picture, Stack, Queue, ST, Graph, …

Data structures.
  Represent data or relationships among data.
  Some are built into Java language: arrays.
  Most are not: linked list, circular list, tree, sparse array, graph, …

next lecture this lecture TSP assignment

this lecture next lecture

3

Collections

Fundamental data types.
  Set of operations (add, remove, test if empty) on generic data.
  Intent is clear when we insert.
  Which item do we remove?

Stack. [LIFO = last in first out]
  Remove the item most recently added.
  Ex: cafeteria trays, Web surfing.

Queue. [FIFO = first in, first out]
  Remove the item least recently added.
  Ex: Hoagie Haven line.

Symbol table.
  Remove the item with a given key.
  Ex: Phone book.

next lecture

this lecture

4

Stacks

5

Stack API

pop

push

public class Reverse {
 public static void main(String[] args) {
 StackOfStrings stack = new StackOfStrings();
 while (!StdIn.isEmpty())
 stack.push(StdIn.readString());
 while (!stack.isEmpty())
 StdOut.println(stack.pop());
 }
}

6

Stack Client Example 1: Reverse

public class Reverse {
 public static void main(String[] args) {
 StackOfStrings stack = new StackOfStrings();
 while (!StdIn.isEmpty()) {
 String s = StdIn.readString();
 stack.push(s);
 }
 while (!stack.isEmpty()) {
 String s = stack.pop ();
 StdOut.println(s);
 }
 }
} % more tiny.txt

it was the best of times

% java Reverse < tiny.txt
times of best the was it

stack contents when standard input is empty

7

Stack Client Example 2: Test Client

stack contents just before first pop operation

 public static void main(String[] args) {
 StackOfStrings stack = new StackOfStrings();
 while (!StdIn.isEmpty()) {
 String s = StdIn.readString();
 if (s.equals("-"))
 StdOut.println(stack.pop());
 else
 stack.push(s);
 }
 }

% more test.txt
to be or not to – be - - that - - - is

% java StackOfStrings < test.txt
to be not that or be

8

Stack: Array Implementation

Array implementation of a stack.
  Use array a[] to store N items on stack.
  push() add new item at a[N].
  pop() remove item from a[N-1].

to be or not

0 1 2 3 4 5 6 7 8 9

a[]

N

public class ArrayStackOfStrings {
 private String[] a;
 private int N = 0;

 public ArrayStackOfStrings(int max) { a = new String[max]; }
 public boolean isEmpty() { return (N == 0); }
 public void push(String item) { a[N++] = item; }
 public String pop() { return a[--N]; }
}

temporary solution: make client provide capacity

stack and array contents
after 4th push operation

how big to make array? [stay tuned]

9

Array Stack: Test Client Trace

push

pop

10

Array Stack: Performance

Running time. Push and pop take constant time.

Memory. Proportional to client-supplied capacity, not number of items.

Problem.
  API does not take capacity as argument (bad to change API).
  Client might use multiple stacks.
  Client might not know what capacity to use.

Challenge. Stack where capacity is not known ahead of time.

11

Linked Lists

12

Sequential vs. Linked Allocation

Sequential allocation. Put items one after another.
  TOY: consecutive memory cells.
  Java: array of objects.

Linked allocation. Include in each object a link to the next one.
  TOY: link is memory address of next item.
  Java: link is reference to next item.

Key distinctions.
  Array: random access, fixed size.
  Linked list: sequential access, variable size.

"Carol"

null

C0

C1

-

-

C2

C3

"Alice"

CA

C4

C5

-

-

C6

C7

-

-

C8

C9

"Bob"

C0

CA

CB

value addr

"Alice"

"Bob"

C0

C1

"Carol"

-

C2

C3

-

-

C4

C5

-

-

C6

C7

-

-

C8

C9

-

-

CA

CB

value addr

array linked list

get ith item

get next item

14

Linked list.
  A recursive data structure.
  An item plus a pointer to another linked list (or empty list).
  Unwind recursion: linked list is a sequence of items.

Node data type.
  A reference to a String.
  A reference to another Node.

Linked Lists

public class Node {
 private String item;
 private Node next;
}

Alice Bob Carol

first

item next

special pointer value null terminates list

null

15

Building a Linked List

Node third = new Node();
third.item = "Carol";
third.next = null;

Node second = new Node();
second.item = "Bob";
second.next = third;

Node first = new Node();
first.item = "Alice";
first.next = second;

"Carol"

null

C0

C1

-

-

C2

C3

"Alice"

CA

C4

C5

-

-

C6

C7

-

-

C8

C9

"Bob"

C0

CA

CB

-

-

CC

CD

-

-

CE

CF

Value addr

Carol null

item next

third

C0 third

main memory

Bob

second

CA second

Alice

first

C4 first

16

Stack Push: Linked List Implementation

Node second = first;

first.item = "of";
first.next = second;

first = new Node();

best the was it

first

of

second

best the was it

first second

best the was it

first

second

best the was it

first

17

Stack Pop: Linked List Implementation

first = first.next;

return item;

best the was it

first

of

best the was it

first

best the was it

first

of

garbage-collected

String item = first.item;

"of"

18

Stack: Linked List Implementation

public class LinkedStackOfStrings {
 private Node first = null;

 private class Node {
 private String item;
 private Node next;
 }

 public boolean isEmpty() { return first == null; }

 public void push(String item) {
 Node second = first;
 first = new Node();
 first.item = item;
 first.next = second;
 }

 public String pop() {
 String item = first.item;
 first = first.next;
 return item;
 }
}

"inner class"

stack and linked list contents
after 4th push operation

19

Linked List Stack: Test Client Trace

push

pop

20

Stack Data Structures: Tradeoffs

Two data structures to implement Stack data type.

Array.
  Every push/pop operation take constant time.
  But… must fix maximum capacity of stack ahead of time.

Linked list.
  Every push/pop operation takes constant time.
  Memory is proportional to number of items on stack.
  But… uses extra space and time to deal with references.

21

List Processing Challenge 1

Q. What does the following code fragment do?

for (Node x = first; x != null; x = x.next) {
 StdOut.println(x.item);
}

Alice Bob Carol null
item next

first

22

List Processing Challenge 2

Q. What does the following code fragment do?

Node last = new Node();
last.item = StdIn.readString();
last.next = null;
Node first = last;
while (!StdIn.isEmpty()) {
 last.next = new Node();
 last = last.next;
 last.item = StdIn.readString();
 last.next = null;
}

Alice Bob Carol null
item next

first
last

23

Parameterized Data Types

24

Parameterized Data Types

We implemented: StackOfStrings.

We also want: StackOfURLs, StackOfInts, …

Strawman. Implement a separate stack class for each type.
  Rewriting code is tedious and error-prone.
  Maintaining cut-and-pasted code is tedious and error-prone.

25

Generics

Generics. Parameterize stack by a single type.

Stack<Apple> stack = new Stack<Apple>();
Apple a = new Apple();
Orange b = new Orange();
stack.push(a);
stack.push(b); // compile-time error
a = stack.pop();

parameterized type

sample client

“stack of apples”

can’t push an orange onto
a stack of apples

26

Generic Stack: Linked List Implementation

public class Stack<Item> {
 private Node first = null;

 private class Node {
 private Item item;
 private Node next;
 }

 public boolean isEmpty() { return first == null; }

 public void push(Item item) {
 Node second = first;
 first = new Node();
 first.item = item;
 first.next = second;
 }

 public Item pop() {
 Item item = first.item;
 first = first.next;
 return item;
 }
}

parameterized type name
(chosen by programmer)

27

Autoboxing

Generic stack implementation. Only permits reference types.

Wrapper type.
  Each primitive type has a wrapper reference type.
  Ex: Integer is wrapper type for int.

Autoboxing. Automatic cast from primitive type to wrapper type.
Autounboxing. Automatic cast from wrapper type to primitive type.

Stack<Integer> stack = new Stack<Integer>();
stack.push(17); // autobox (int -> Integer)
int a = stack.pop(); // autounbox (Integer -> int)

28

Stack Applications

Real world applications.
  Parsing in a compiler.
  Java virtual machine.
  Undo in a word processor.
  Back button in a Web browser.
  PostScript language for printers.
  Implementing function calls in a compiler.

29

Function Calls

How a compiler implements functions.
  Function call: push local environment and return address.
  Return: pop return address and local environment.

Recursive function. Function that calls itself.
Note. Can always use an explicit stack to remove recursion.

 static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

gcd (216, 192)

 static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

gcd (192, 24)

 static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

gcd (24, 0)

p = 24, q = 0

p = 192, q = 24

p = 216, q = 192

30

Arithmetic Expression Evaluation

Goal. Evaluate infix expressions.

Two stack algorithm. [E. W. Dijkstra]
  Value: push onto the value stack.
  Operator: push onto the operator stack.
  Left parens: ignore.
  Right parens: pop operator and two values;

push the result of applying that operator
to those values onto the operand stack.

Context. An interpreter!

operand operator

value stack
operator stack

31

Arithmetic Expression Evaluation

public class Evaluate {
 public static void main(String[] args) {
 Stack<String> ops = new Stack<String>();
 Stack<Double> vals = new Stack<Double>();
 while (!StdIn.isEmpty()) {
 String s = StdIn.readString();
 if (s.equals("(")) ;
 else if (s.equals("+")) ops.push(s);
 else if (s.equals("*")) ops.push(s);
 else if (s.equals(")")) {
 String op = ops.pop();
 if (op.equals("+")) vals.push(vals.pop() + vals.pop());
 else if (op.equals("*")) vals.push(vals.pop() * vals.pop());
 }
 else vals.push(Double.parseDouble(s));
 }
 StdOut.println(vals.pop());
 }
}

% java Evaluate
(1 + ((2 + 3) * (4 * 5)))
101.0

32

Correctness

Why correct? When algorithm encounters an operator surrounded by
two values within parentheses, it leaves the result on the value stack.

So it's as if the original input were:

Repeating the argument:

Extensions. More ops, precedence order, associativity, whitespace.

1 + (2 - 3 - 4) * 5 * sqrt(6*6 + 7*7)

(1 + ((2 + 3) * (4 * 5)))

(1 + (5 * (4 * 5)))

(1 + (5 * 20))

(1 + 100)

101

33

Stack-Based Programming Languages

Observation 1. Remarkably, the 2-stack algorithm computes the same
value if the operator occurs after the two values.

Observation 2. All of the parentheses are redundant!

Bottom line. Postfix or "reverse Polish" notation.

Applications. Postscript, Forth, calculators, Java virtual machine, …

(1 ((2 3 +) (4 5 *) *) +)

1 2 3 + 4 5 * * +

Jan Lukasiewicz

34

Queues

35

Queue API

public static void main(String[] args) {
 Queue<String> q = new Queue<String>();
 q.enqueue("Vertigo");
 q.enqueue("Just Lose It");
 q.enqueue("Pieces of Me");
 q.enqueue("Pieces of Me");
 while(!q.isEmpty())
 StdOut.println(q.dequeue());
}

return an iterator over the keys iterator() Iterator<Key>

enqueue dequeue

36

Enqueue: Linked List Implementation

last = new Node();
last.item = "of";
last.next = null;

oldlast.next = last;

first

it was the best

last

of

first

it was the best

oldlast

it was the best of

last first oldlast

Node oldlast = last; it was the best

last first oldlast

last

37

Dequeue: Linked List Implementation

was the best of

was the best of first = first.next;

was the best of return item;

first

first

first

it String item = first.item;

last

last

last

garbage-collected

it

38

 Queue: Linked List Implementation

public class Queue<Item> {
 private Node first, last;

 private class Node { Item item; Node next; }

 public boolean isEmpty() { return first == null; }

 public void enqueue(Item item) {
 Node oldlast = last;
 last = new Node();
 last.item = item;
 last.next = null;
 if (isEmpty()) first = last;
 else oldlast.next = last;
 }

 public Item dequeue() {
 Item item = first.item;
 first = first.next;
 if (isEmpty()) last = null;
 return item;
 }
}

39

Queue Applications

Some applications.
  iTunes playlist.
  Data buffers (iPod, TiVo).
  Asynchronous data transfer (file IO, pipes, sockets).
  Dispensing requests on a shared resource (printer, processor).

Simulations of the real world.
  Guitar string.
  Traffic analysis.
  Waiting times of customers at call center.
  Determining number of cashiers to have at a supermarket.

40

M/D/1 Queuing Model

M/D/1 queue.
  Customers are serviced at fixed rate of µ per minute.
  Customers arrive according to Poisson process at rate of λ per minute.

Q. What is average wait time W of a customer?
Q. What is average number of customers L in system?

Arrival rate λ Departure rate µ

Infinite queue Server

€

Pr[X ≤ x] = 1− e−λx
inter-arrival time has exponential distribution

41

42

Event-Based Simulation

public class MD1Queue {
 public static void main(String[] args) {
 double lambda = Double.parseDouble(args[0]);
 double mu = Double.parseDouble(args[1]);
 Queue<Double> q = new Queue<Double>();
 double nextArrival = StdRandom.exp(lambda);
 double nextService = nextArrival + 1/mu;
 while(true) {

 if (nextArrival < nextService) {
 q.enqueue(nextArrival);
 nextArrival += StdRandom.exp(lambda);
 }

 else {
 double wait = nextService - q.dequeue();
 // add waiting time to histogram
 if (q.isEmpty()) nextService = nextArrival + 1/mu;
 else nextService = nextService + 1/mu;
 }
 }
 }
}

arrival

service

43

Observation. As service rate approaches arrival rate, service goes to h***.

Queueing theory.

λ = .2, µ = .25 λ = .2, µ = .21

M/D/1 Queue Analysis

€

W = λ
2µ (µ −λ)

 + 1
µ

 , L = λ W

Little's law

see ORFE 309

44

Summary

Stacks and queues are fundamental ADTs.
  Array implementation.
  Linked list implementation.
  Different performance characteristics.

Many applications.

