3.3 Designing Data Types

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 3/29/116:35 AM

Alan Kay

Alan Kay. [Xerox PARC 1970s]

- Invented Smalltalk programming language.
- Conceived Dynabook portable computer.
- Ideas led to: laptop, modern GUI, OOP.

" The computer revolution hasn't started yet."

- "The best way to predict the future is to invent it."
- " If you don't fail at least 90 per cent of the time, you're not aiming high enough."

— Alan Kay

Alan Kay 2003 Turing Award

Procedural programming. [verb-oriented]

- Tell the computer to do this.
- Tell the computer to do that.

OOP philosophy. Software is a simulation of the real world.

- We know (approximately) how the real world works.
- Design software to model the real world.

Objected oriented programming (OOP). [noun-oriented]

- Programming paradigm based on data types.
- Identify objects that are part of the problem domain or solution.
- Identity: objects are distinguished from other objects (references).
- State: objects in the world know things (instance variables).
- Behavior: objects do things (methods).

Encapsulation

Bond. What's your escape route? Saunders. Sorry old man. Section 26 paragraph 5, that information is on a need-to-know basis only. I'm sure you'll understand.

Encapsulation

Data type. Set of values and operations on those values. Ex. int, String, Complex, Vector, Document, GuitarString, ...

Encapsulated data type. Hide internal representation of data type.

Separate implementation from design specification.

- Class provides data representation and code for operations.
- Client uses data type as black box.
- API specifies contract between client and class.

Client

API

- volume

- change channel

- adjust picture

- decode NTSC signal

Intuition

Implementation

- cathode ray tube
- electron gun
- Sony Wega 36XBR250
- 241 pounds

client needs to know how to use API implementation needs to know what API to implement

7

9

Implementation and client need to agree on API ahead of time.

Counter Data Type

Counter. Data type to count electronic votes.

c.count = -16022;

Oops. Al Gore receives -16,022 votes in Volusia County, Florida.

Bottom line. You don't need to know how a data type is implemented

Intuition

in order to use it.

Client

API - V

- change channel - adjust picture - decode NTSC signal

- volume

client needs to know how to use API implementation needs to know what API to implement

Implementation

- gas plasma monitor

- Samsung FPT-6374

- wall mountable

- 4 inches deep

6

8

Can substitute better implementation without changing the client.

Counter. Encapsulated data type to count electronic votes.

Does not compile.

Counter c = new Counter("Volusia County"); c.count = -16022;

Benefit. Can guarantee that each data type value remains in a consistent state.

Time Bombs

Internal representation changes.

- [Y2K] Two digit years: January 1, 2000.
- . [Y2038] 32-bit seconds since 1970: January 19, 2038.
- [VIN numbers] We'll run out by 2010.

www.cartoonstock.com/directory/m/millenium_time-bomb.asp

Lesson. By exposing data representation to client, might need to sift through millions of lines of code in client to update.

Encapsulation.

- Keep data representation hidden with **private** access modifier.
- Expose API to clients using public access modifier.

e.g., to polar coordinates

Advantage. Can switch internal representation without changing client. Note. All our data types are already encapsulated!

Ask, Don't Touch

Encapsulated data types.

- Don't touch data and do whatever you want.
- Instead, ask object to manipulate its data.

"Ask, don't touch."

Adele Goldberg Former president of ACM Co-developed Smalltalk

Lesson. Limiting scope makes programs easier to maintain and understand.

"principle of least privilege"

10

Immutability

Immutable data type. Object's value cannot change once constructed.

mutable	immutable
Picture	Charge
Histogram	Color
Turtle	Stopwatch
StockAccount	Complex
Counter	String
Java arrays	primitive types

Immutability: Advantages and Disadvantages

Immutable data type. Object's value cannot change once constructed.

Advantages.

- Avoid aliasing bugs.
- Makes program easier to debug.
- Limits scope of code that can change values.
- Pass objects around without worrying about modification.

Disadvantage. New object must be created for every value.

Final Access Modifier

Final. Declaring an instance variable to be final means that you can assign it a value only once, in initializer or constructor.

Advantages.

16

- Helps enforce immutability.
- Prevents accidental changes.
- Makes program easier to debug.
- Documents that the value cannot not change.

Spatial Vectors

Set of values. Sequence of real numbers. [Cartesian coordinates]

APT	public clas	s Vector	
/		<pre>Vector(double[] a)</pre>	create a vector with the given Cartesian coordinates
	Vector	plus(Vector b)	<i>sum of this vector and</i> b
	Vector	minus(Vector b)	difference of this vector and b
	Vector	times(double t)	scalar product of this vector and t
	double	dot(Vector b)	dot product of this vector and b
	double	magnitude()	magnitude of this vector
	Vector	direction()	unit vector with same direction as this vector

 $x = (0, 3, 4, 0), \quad y = (0, -3, 1, -4)$ x + y = (0, 0, 5, -4) 3x = (0, 9, 12, 0) $x \cdot y = (0 \cdot 0) + (3 \cdot -3) + (4 \cdot 1) + (0 \cdot -4) = -5$ $|x| = (0^2 + 3^2 + 4^2 + 0^2)^{1/2} = 5$ $\Rightarrow x = x / |x| = (0, 0.6, 0.8, 0)$

Vector Data Type Applications

Relevance. A quintessential mathematical abstraction.

Applications.

- Statistics.
- Linear algebra.
- Clustering and similarity search.
- Force, velocity, acceleration, momentum, torque.
- ...

Vector Data Type: Implementation

<pre>public class Vector { private int N;</pre>	_
<pre>private double[] coord</pre>	ds ; instance variables
<pre>public Vector(double[] N = a.length; coords = new double for (int i = 0; i < coords[i] = a[i]</pre>	a) { e[N]; < N; i++)];
}	constructor
<pre>public double dot(Vect double sum = 0.0; for (int i = 0; i < sum += (coords[i return sum; }</pre>	tor b) { < N; i++) i] * b.coords[i]);
<pre>public Vector plus(Vec double[] c = new do for (int i = 0; i <</pre>	<pre>ctor b) { puble[N]; < N; i++) + b.coords[i]; c);</pre>

Vector Data Type: Implementation

```
public Vector times(double t) {
    double[] c = new double[N];
    for (int i = 0; i < N; i++)
        c[i] = t * coords[i];
    return new Vector(c);
}
public double magnitude() {
    return Math.sqrt(this.dot(this));
}
public Vector direction() {
    return this.times(1.0 / this.magnitude());
}
...</pre>
```

This. The keyword this is a reference to the invoking object. Ex. When you invoke a.magnitude(), this is an alias for a.

Data Visualization

Challenge. Visualize election results.

3.5 Case Study: Purple America

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 3/29/11 6:35 AM

Data Visualization

Approach.

- Gather data from data sources on the web; save in local files.
- Build a modular program that reads files and draws maps.

3

2008 Presidential election

Data Sources

Geometric data.

www.census.gov/tiger/boundary

www.uselectionatlas.org

 Text files have boundaries of every state and county. (format useful for programmers)

Election returns.

 Web site displays election results. (need to screen scrape to extract raw data)

Emerging standard.

- Publish data in text format on the web (like geometric data).
- Write mashup program to produce visuals (like we're doing)!

Geometric Data: States within the Continental US

USA data file. State names and boundary points.

Geometric Data: Counties within a State

State data files. County names and boundary points.

Screen scraping. Download html from web and parse.

http://uselectionatlas.org/RESULTS/datagraph.php?year=2008&fips=34

NJ = FIPS 34

Screen-scraped results. Votes for McCain, Obama, Other by region.

Election Returns: By State

Screen-scraped results. Votes for McCain, Obama, Other by region.

Different data sources have different conventions.

- State names: NJ vs. New Jersey vs. FIPS 34.
- County names: LaSalle vs. La Salle, Kings County vs. Brooklyn.

Other annoyances.

- A state can be comprised of several disjoint polygons.
- A county can be entirely inside another county.
- County boundaries change over time.
- Write-in candidates.
- Unreported results.
- Alaska and Hawaii.

Charlottesville

12

Bottom line. Must clean the data (but write a program to do most of it!)

714 data files. $[(13+1) \times (50+1)]$

- Each file represents a "whole" divided into regions.
- One entry per region.

whole	part	files	type of data
		USA.txt	boundary
USA	state	USA2008.txt USA2004.txt USA1960.txt	election return
		NJ.txt	boundary
state	county	NJ2008.txt NJ2004.txt NJ1960.txt	election return
		[similar files fo	or all 50 states]

Modular Programming

Modular programming.

- Model problem by decomposing into components.
- Develop data type for each component.

Region. State or county.

Vote tally. Number of votes for each candidate in a region. Election map. Map of votes by region in a given election.

Modular Programming

Region Data Type

Set of values. Sequence of boundary points, name. Operations. Create and draw.

Vote Tally Data Type

Vote tally. Election returns for one region.

Mercer, NJ

Set of values. Number of votes for each candidate.

Operations.

- Create (whole, region, year).
- Number of votes for Republican, Democrat, and Independent candidates.

needed to locate the data Γ	
r).	% more NJ2008.txt
blican,	Mercer, 50223, 107926, 2229,
nt candidates.	Middlesex, 123695, 193812, 4283, Monmouth, 160433, 148737, 4244,

Vote Tally Data Type: Java Implementation

```
public class VoteTally {
  private final int rep, dem, ind;
  public VoteTally(String region, String whole, int year) {
     In in = new In(whole + year + ".txt");
      String input = in.readAll();
     int i0 = input.indexOf(region);
     int i1 = input.indexOf(",", i0+1);
     int i2 = input.indexOf(",", i1+1);
     int i3 = input.indexOf(",", i2+1);
     int i4 = input.indexOf(",", i3+1);
     rep = Integer.parseInt(input.substring(i1+1, i2));
     dem = Integer.parseInt(input.substring(i2+1, i3));
     ind = Integer.parseInt(input.substring(i3+1, i4));
   3
  public int rep() { return rep; }
  public int dem() { return dem; }
                                          % more NJ2008.txt
  public int ind() { return ind; }
ł
                                          Mercer, 50223, 107926, 2229,
                                             i1
                                                       i3
                                                            i4
```

18

Election map. Map of votes by region in a given election.

<pre>public class ElectionMap { private final int REIGONS</pre>
<pre>private Color getColor(VoteTally tally) { if (tally.rep() > tally.dem()) return StdDraw.RED; else if (tally.dem() > tally.rep()) return StdDraw.BLUE; else return StdDraw.BLACK; }</pre>
<pre>public void show() { for (int j = 0; j < REGIONS; j++) { StdDraw.setPenColor(getColor(votes[j])); regions[j].draw(); } for each region, set the pen color according to the vote tallies and draw the region</pre>
}

Election Map Data Type: Java Implementation

26

Modular Programming

Modular program. Collection of interacting data types.

hierarchy of instance variables

Red states, blue states. Nice, but a misleading and polarizing picture.

Edward Tufte. Create charts with high data density that tell the truth.

Purple New Jersey

Data Visualization

1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0
0110100000000000000000000000000000000
0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1
00111101101100110010
010101101001011011000
1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 1
010111100101101111011
101010110100101101100
010011110111011001100
101011110010110111101
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
001001111011101100110
010101111001010011110
111010101010001011011
00010011110110110110011

Purple America

Idea. [Robert J. Vanderbei] Assign color based on number of votes. • a₁ = McCain votes. http://www.princeton.edu/~rvdb/JAVA/election2004

- a₂ = Other votes.
- a₃ = Obama votes.

public Color getColor() {
 int dem = tally.dem(), rep = tally.rep(), ind = tally.ind();
 int tot = tally.dem + tally.rep + tally.ind;
 return new Color((float) rep/tot, (float) ind/tot, (float) dem/tot);
}

Purple America

Purple America

% java ElectionMap USA 2008

Data Visualization: Design Issues

Remark. Humans perceive red more strongly than blue.

Remark. Amount of color should be proportional to number of votes, not geographic boundary.

Remark. Project latitude + longitude coordinates to 2d plane.

Mercator projection

Albers projection

% java ElectionMap USA-county 2008

3D Visualization

3D visualization. Volume proportional to votes; azimuthal projection.

Robert J. Vanderbei www.princeton.edu/~rvdb/JAVA/election2004

Cartograms

Cartogram. Area of state proportional to number of electoral votes.

Michael Gastner, Cosma Shalizi, and Mark Newman www-personal.umich.edu/~mejn/election

Cartograms

Cartogram. Area of country proportional to population.

Summary

39

41

Modular programming.

- Break a large program into smaller independent components.
- Develop a data type for each component.
- EX: Region, VoteTally, ElectionMap, In, Out.

Ex 1. Build large software project.

- Software architect specifies API.
- Each programmer implements one module.
- Debug and test each piece independently. [unit testing]

Ex 2. Build reusable libraries.

- Language designer extends language with new data types.
- Programmers share extensive libraries.

Data visualization. You can do it! [worthwhile to learn from Tufte]