
2.3 Recursion

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 2/17/11 10:02 PM	

2

Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?
  New mode of thinking.
  Powerful programming paradigm.

Many computations are naturally self-referential.
  Mergesort, FFT, gcd, depth-first search.
  Linked data structures.
  A folder contains files and other folders.

Closely related to mathematical induction.

Reproductive Parts
M. C. Escher, 1948

3

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Ex. gcd(4032, 1272) = 24.

Applications.
  Simplify fractions: 1272/4032 = 53/168.
  RSA cryptosystem.

4032 = 26 × 32 × 71

 1272 = 23 × 31 × 531

 gcd = 23 × 31 = 24

4

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

Euclid's algorithm. [Euclid 300 BCE]

gcd(4032, 1272) = gcd(1272, 216)
 = gcd(216, 192)
 = gcd(192, 24)
 = gcd(24, 0)

 = 24.

€

gcd(p, q) =
p if q = 0
gcd(q, p % q) otherwise

⎧
⎨
⎩

base case

reduction step,
converges to base case

4032 = 3 × 1272 + 216

5

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

p

p % q q

x x x x x x x x

p = 8x
q = 3x
gcd(p, q) = x

q

gcd

€

gcd(p, q) =
p if q = 0
gcd(q, p % q) otherwise

⎧
⎨
⎩

base case
reduction step,
converges to base case

6

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

Java implementation.

base case
reduction step

public static int gcd(int p, int q) {
 if (q == 0) return p;
 else return gcd(q, p % q);
}

€

gcd(p, q) =
p if q = 0
gcd(q, p % q) otherwise

⎧
⎨
⎩

base case
reduction step,
converges to base case

Recursive Graphics

New Yorker Magazine, August 11, 2008

9

10

Htree

H-tree of order n.
  Draw an H.
  Recursively draw 4 H-trees of order n-1, one connected to each tip.

and half the size

order 1 order 2 order 3

tip

size

public class Htree {
 public static void draw(int n, double sz, double x, double y) {
 if (n == 0) return;
 double x0 = x - sz/2, x1 = x + sz/2;
 double y0 = y - sz/2, y1 = y + sz/2;

 StdDraw.line(x0, y, x1, y);
 StdDraw.line(x0, y0, x0, y1);
 StdDraw.line(x1, y0, x1, y1);

 draw(n-1, sz/2, x0, y0);
 draw(n-1, sz/2, x0, y1);
 draw(n-1, sz/2, x1, y0);
 draw(n-1, sz/2, x1, y1);
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 draw(n, .5, .5, .5);
 }
}

11

Htree in Java

draw the H, centered on (x, y)

recursively draw 4 half-size Hs

12

20% 40% 60% 80% 100%

Animated H-tree

Animated H-tree. Pause for 1 second after drawing each H.

http://en.wikipedia.org/wiki/Image:Hanoiklein.jpg

Towers of Hanoi

14

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.
  Only one disc may be moved at a time.
  A disc can be placed either on empty peg or on top of a larger disc.

Towers of Hanoi demo

start finish

Edouard Lucas (1883)

15

Towers of Hanoi: Recursive Solution

Move n-1 smallest discs right.

Move n-1 smallest discs right. Move largest disc left.
cyclic wrap-around

16

Towers of Hanoi Legend

Q. Is world going to end (according to legend)?
  64 golden discs on 3 diamond pegs.
  World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?

17

Towers of Hanoi: Recursive Solution

public class TowersOfHanoi {

 public static void moves(int n, boolean left) {
 if (n == 0) return;
 moves(n-1, !left);
 if (left) System.out.println(n + " left");
 else System.out.println(n + " right");
 moves(n-1, !left);
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 moves(N, true);
 }

}

moves(n, true) : move discs 1 to n one pole to the left
moves(n, false): move discs 1 to n one pole to the right

smallest disc

18

Towers of Hanoi: Recursive Solution

% java TowersOfHanoi 4
1 right
2 left
1 right
3 right
1 right
2 left
1 right
4 left
1 right
2 left
1 right
3 right
1 right
2 left
1 right

% java TowersOfHanoi 3
1 left
2 right
1 left
3 left
1 left
2 right
1 left

subdivisions of ruler

every other move is smallest disc

19

Towers of Hanoi: Recursion Tree

3, true

2, false

1, true 1, true

2, false

1, true 1, true

1 left 2 right 1 left 3 left 2 right 1 left 1 left

n, left

1 14

2 7

3 4 6 5 9 10 12 11 17 18 20 19 23 24 26 25

13 8 16 21 27 22

28 15

20

Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution.
  Takes 2n - 1 moves to solve n disc problem.
  Sequence of discs is same as subdivisions of ruler.
  Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!
  Alternate between two moves:

–  move smallest disc to right if n is even
–  make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.
  Takes 585 billion years for n = 64 (at rate of 1 disc per second).
  Reassuring fact: any solution takes at least this long!

to left if n is odd

21

Divide-and-Conquer

Divide-and-conquer paradigm.
  Break up problem into smaller subproblems of same structure.
  Solve subproblems recursively using same method.
  Combine results to produce solution to original problem.

Many important problems succumb to divide-and-conquer.
  FFT for signal processing.
  Parsers for programming languages.
  Multigrid methods for solving PDEs.
  Quicksort and mergesort for sorting.
  Hilbert curve for domain decomposition.
  Quad-tree for efficient N-body simulation.
  Midpoint displacement method for fractional Brownian motion.

Divide et impera. Veni, vidi, vici. - Julius Caesar

Fibonacci Numbers

23

Fibonacci Numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Fibonacci rabbits

L. P. Fibonacci
(1170 - 1250)

€

F(n) =

0 if n = 0
1 if n =1
F(n−1) + F(n−2) otherwise

⎧

⎨
⎪

⎩
⎪

24

Fibonacci Numbers and Nature

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

€

F(n) =

0 if n = 0
1 if n =1
F(n−1) + F(n−2) otherwise

⎧

⎨
⎪

⎩
⎪

pinecone

cauliflower

25

A Possible Pitfall With Recursion

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

A natural for recursion?

public static long F(int n) {
 if (n == 0) return 0;
 if (n == 1) return 1;
 return F(n-1) + F(n-2);
}

€

F(n) =

0 if n = 0
1 if n =1
F(n−1) + F(n−2) otherwise

⎧

⎨
⎪

⎩
⎪

26

Recursion Challenge 1 (difficult but important)

Q. Is this an efficient way to compute F(50)?

A. No, no, no! This code is spectacularly inefficient.

public static long F(int n) {
 if (n == 0) return 0;
 if (n == 1) return 1;
 return F(n-1) + F(n-2);
}

F(50)

F(49) F(48)

F(48)

F(47) F(46)

F(47)

F(46) F(45)

F(46)

F(45) F(44)

F(47)

F(46) F(45)

F(50) is called once.

F(49) is called once.

F(48) is called 2 times.

F(47) is called 3 times.

F(46) is called 5 times.

F(45) is called 8 times.
...

F(1) is called 12,586,269,025 times. recursion tree for naïve Fibonacci function

F(50)

27

Recursion Challenge 2 (easy and also important)

Q. Is this an efficient way to compute F(50)?

A. Yes. This code does it with 50 additions.
Lesson. Don’t use recursion to engage in exponential waste.

Context. This is a special case of an important programming technique
known as dynamic programming (stay tuned).

public static long(int n) {
 long[] F = new long[n+1];
 F[0] = 0; F[1] = 1;
 for (int i = 2; i <= n; i++)
 F[i] = F[i-1] + F[i-2];
 return F[n];
}

€

F(n) =
φ n − (1−φ)n

5
= φ n 5⎣ ⎦

φ = golden ratio ≈ 1.618

FYI: classic math

28

Summary

How to write simple recursive programs?
  Base case, reduction step.
  Trace the execution of a recursive program.
  Use pictures.

Why learn recursion?
  New mode of thinking.
  Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.

Towers of Hanoi by W. A. Schloss.

