
Program Development

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 2/17/11 7:35 AM!

A Foundation for Programming

3

objects

functions and modules

graphics, sound, and image I/O

arrays

conditionals and loops

Math text I/O

assignment statements primitive data types

what you've
done already

any program you might want to write

Program Development

Program development. Creating a program and putting it to good use.

Program development environment. Software to support cycle of
editing, compiling, and executing programs.

4
command line Dr. Java

Program Development in Java

0. Think about your problem.

1.  Edit your program.
!  Use a text editor.
!  Result: a text file such as HelloWorld.java.!

2.  Compile it to create an executable file.
!  Use the Java compiler
!  Result: a Java bytecode file file such as HelloWorld.class.
!  Mistake? Go back to 1 to fix and recompile.

3.  Execute your program.
!  Use the Java runtime.
!  Result: your program’s output.
!  Mistake? Go back to 1 to fix, recompile, and execute.

5

Program Development in Java (using command line)

1.  Edit your program using any text editor.
2.  Compile it to create an executable file.
3.  Execute your program.

6

editor running
in virtual terminal

second terminal
for commands

virtual
TV

Program Development in Java (using command line)

1.  Edit your program.
2.  Compile it by typing javac HelloWorld.java at the command line.
3.  Execute your program.

7

invoke Java compiler
at command line

creates
HelloWorld.class!

Program Development in Java (using command line)

1.  Edit your program.
2.  Compile it to create an executable file.
3.  Execute by typing java HelloWorld at the command line.

8

invoke Java runtime
at command line

uses
HelloWorld.class!

Program Development in Java (using Dr. Java)

1.  Edit your program using the built-in text editor.
2.  Compile it to create an executable file.
3.  Execute your program.

9

text
editor

Program Development in Java (using Dr. Java)

1.  Edit your program.
2.  Compile it by clicking the “compile” button.
3.  Execute your program.

10

compile
button

creates
HelloWorld.class!

Program Development in Java (using Dr. Java)

1.  Edit your program.
2.  Compile it to create an executable file.
3.  Execute by clicking the “run” button or using Interactions pane.

11

both use
HelloWorld.class!

Alternative 1:
run button

(ok if no args)

Alternative 2:
interactions pane
(to provide args)

12

A Short History

Program Development Environments: A Short History

Historical context is important in computer science.
!  We regularly use old software.
!  We regularly emulate old hardware.
!  We depend upon old concepts and designs.

First requirement in any computer system: program development.

Widely-used methods:
!  Switches/lights.
!  Punched cards.
!  Terminal.
!  Editor/virtual terminal.
!  IDE.

13

1960

1970

1980

1990

2000

switches/lights

punched card/tape

editor/virtual terminal

integrated development
environment

editor/terminal

Switches and Lights

Use switches to enter binary program code, lights to read results.

14

PDP-8, circa 1970

Punched Cards / Line Printer

Use punched cards for program code, line printer for output.

15 15

IBM System 360, circa 1975

Timesharing Terminal

Use terminal for editing program, reading output, and controlling computer.

Timesharing: allowed many people to simultaneously use a single machine.

16

VT-100 terminal

VAX 11/780 circa 1977

Editor and Virtual Terminal on a Personal Computer

Use an editor to create and make changes to the program text.
Use a virtual terminal to invoke the compiler and run the executable code.

Pros. Works with any language, useful for other tasks, used by pros.
Cons. Good enough for large projects?

17

Integrated Development Environment

Use a customized application for all program development tasks.

Ex 1. DrJava.
!  Ideal for novices.
!  Easy-to-use language-specific tools.

Ex 2. Eclipse.
!  Widely used by professionals.
!  Powerful debugging and style-checking tools.
!  Steep learning curve.
!  Overkill for short programs.

18

Lessons from Short History

First requirement in any computer system: program development.

Program development environment must support cycle of editing,
compiling, and executing programs.

Two approaches that have served for decades:
!  Editor and virtual terminal.
!  Integrated development environment.

19

Macbook Air 2008

Xerox Alto 1978

20

Debugging

Admiral Grace Murray Hopper

95% of Program Development

Def. A bug is a mistake in a computer program.

Programming is primarily a process of finding and fixing bugs.

Good news. Can use computer to test program.
Bad news. Cannot use computer to automatically find all bugs.

21
profound idea [stay tuned]

95% of Program Development

Debugging. Always a logical explanation.
!  What would the machine do?
!  Explain it to the teddy bear.

You will make many mistakes as you write programs. It's normal.

22

 “ If I had eight hours to chop down a tree, I would spend
 six hours sharpening an axe. ” — Abraham Lincoln

 “As soon as we started programming, we found out to our
 surprise that it wasn't as easy to get programs right as we had
 thought. I can remember the exact instant when I realized that
 a large part of my life from then on was going to be spent in
 finding mistakes in my own programs. ” — Maurice Wilkes

Debugging Example

Factor. Given an integer N > 1, compute its prime factorization.

Application. Break RSA cryptosystem (factor 200-digit numbers).

23

3,757,208 = 23 ! 7 ! 132 ! 397

98 = 2 ! 72

17 = 17

11,111,111,111,111,111 = 2,071,723 ! 5,363,222,357

Debugging Example

Factor. Given an integer N > 1, compute its prime factorization.

Brute-force algorithm. For each putative factor i = 2, 3, 4, …,
check if N is a multiple of i, and if so, divide it out.

24

3757208/8

Debugging: 95% of Program Development

Programming. A process of finding and fixing mistakes.
!  Compiler error messages help locate syntax errors.
!  Run program to find semantic and performance errors.

25

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0])
 for (i = 0; i < n; i++) {
 while (n % i == 0)
 StdOut.print(i + " ")
 n = n / i

 }
 }
}

this program has many bugs!

as long as i is a
factor, divide it out

check if i
is a factor

Debugging: Syntax Errors

Syntax error. Illegal Java program.
!  Compiler error messages help locate problem.
!  Goal: no errors and a file named Factors.class.

26

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0])
 for (i = 0; i < n; i++) {
 while (n % i == 0)
 StdOut.print(i + " ")
 n = n / i

 }
 }
}

% javac Factors.java
Factors.java:4: ';' expected
 for (i = 0; i < n; i++)
 ^
1 error the first error

Debugging: Syntax Errors

Syntax error. Illegal Java program.
!  Compiler error messages help locate problem.
!  Goal: no errors and a file named Factors.class.

27

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0]);
 for (int i = 0; i < n; i++) {
 while (n % i == 0)
 StdOut.print(i + " ");
 n = n / i;
 }
 }
}

syntax (compile-time) errors

need to
declare
variable i

need terminating
semicolons

Debugging: Semantic Errors

Semantic error. Legal but wrong Java program.
!  Run program to identify problem.
!  Add print statements if needed to produce trace.

28

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0]);
 for (int i = 0; i < n; i++) {
 while (n % i == 0)
 StdOut.print(i + " ");
 n = n / i;
 }
 }
} % javac Factors.java

% java Factors
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 0
 at Factors.main(Factors.java:5)

oops, no argument

Debugging: Semantic Errors

Semantic error. Legal but wrong Java program.
!  Run program to identify problem.
!  Add print statements if needed to produce trace.

29

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0]);
 for (int i = 0; i < n; i++) {
 while (n % i == 0)
 StdOut.print(i + " ");
 n = n / i;
 }
 }
} % javac Factors.java

% java Factors 98
Exception in thread "main"
java.lang.ArithmeticExeption: / by zero
 at Factors.main(Factors.java:8)

need to start at 2
because 0 and 1

cannot be factors

Debugging: Semantic Errors

Semantic error. Legal but wrong Java program.
!  Run program to identify problem.
!  Add print statements if needed to produce trace.

30

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0]);
 for (int i = 2; i < n; i++) {
 while (n % i == 0)
 StdOut.print(i + " ");
 n = n / i;
 }
 }
} % javac Factors.java

% java Factors 13
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 … infinite loop!

indents do not
imply braces

Debugging: The Beat Goes On

Success. Program factors 98 = 2 ! 72.
!  But that doesn't mean it works for all inputs.
!  Add trace to find and fix (minor) problems.

31

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0]);
 for (int i = 2; i < n; i++) {
 while (n % i == 0) {
 StdOut.print(i + " ");
 n = n / i;
 }
 }
 }
}

% java Factors 98
2 7 7 %

% java Factors 5

% java Factors 6
2 %

need newline

??? no output

??? missing the 3

Debugging: The Beat Goes On

Success. Program factors 98 = 2 ! 72.
!  But that doesn't mean it works for all inputs.
!  Add trace to find and fix (minor) problems.

32

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0]);
 for (int i = 2; i < n; i++) {
 while (n % i == 0) {
 StdOut.println(i + " ");
 n = n / i;
 }
 StdOut.println("TRACE: " + i + " " + n);
 }
 }
}

% java Factors 5
TRACE 2 5
TRACE 3 5
TRACE 4 5

% java Factors 6
2
TRACE 2 3

Aha!
i loop should
go up to n

Debugging: Success?

Success. Program now seems to work.

33

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0]);
 for (int i = 2; i <= n; i++) {
 while (n % i == 0) {
 StdOut.print(i + " ");
 n = n / i;
 }
 }
 StdOut.println();
 }
}

% java Factors 5
5

% java Factors 6
2 3

% java Factors 98
2 7 7

% java Factors 3757208
2 2 2 7 13 13 397

Debugging: Performance Error

Performance error. Correct program, but too slow.

34

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0]);
 for (int i = 2; i <= n; i++) {
 while (n % i == 0) {
 StdOut.print(i + " ");
 n = n / i;
 }
 }
 StdOut.println();
 }
}

% java Factors 11111111
11 73 101 137

% java Factors 11111111111
21649 51329

% java Factors 11111111111111
11 239 4649 909091

% java Factors 11111111111111111
2071723

very long wait
(with a surprise ending)

% java Factors 11111111
11 73 101 137

% java Factors 11111111111
21649 51329

% java Factors 11111111111111
11 239 4649 909091

% java Factors 11111111111111111
2071723 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1 …

Debugging: Performance Error

Performance error. Correct program, but too slow.

Solution. Improve or change underlying algorithm.

35

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0]);
 for (int i = 2; i <= n/i; i++) {
 while (n % i == 0) {
 StdOut.print(i + " ");
 n = n / i;
 }
 }
 StdOut.println();
 }
}

fixes performance error:
if n has a factor, it has one

less than or equal to its square root

% java Factors 98
2 7 7

% java Factors 11111111
11 73 101

% java Factors 11111111111111
11 239 4649

% java Factors 11111111111111111
2071723

missing last factor
(sometimes)

Debugging: Performance Error

Caveat. Optimizing your code tends to introduce bugs.
Lesson. Don't optimize until it's absolutely necessary.

36

public class Factors {
 public static void main(String[] args) {
 long n = Long.parseLong(args[0]);
 for (int i = 2; i <= n/i; i++) {
 while (n % i == 0) {
 StdOut.print(i + " ");
 n = n / i;
 }
 }
 if (n > 1) System.out.println(n);
 else System.out.println();
 }
}

% java Factors 11111111
11 73 101 137

% java Factors 11111111111
21649 51329

% java Factors 11111111111111
11 239 4649 909091

% java Factors 11111111111111111
2071723 5363222357

need special case to print
biggest factor

(unless it occurs more than once)

"corner case"

Program Development: Analysis

Q. How large an integer can I factor?

Note. Can't break RSA this way (experts are still trying).
37

% java Factors 3757208
2 2 2 7 13 13 397

% java Factors 9201111169755555703
9201111169755555703

† estimated

 largest factor 3 instant

digits (i <= N)

6 0.15 seconds

9 77 seconds

12 21 hours †

instant

(i <= N/i)

instant

instant

0.16 seconds

15 2.4 years †

18 2.4 millennia †

2.7 seconds

92 seconds

after a few minutes of
computing….

Debugging

Programming. A process of finding and fixing mistakes.

1.  Create the program.

2.  Compile it.
Compiler says: That’s not a legal program.
Back to step 1 to fix syntax errors.

3.  Execute it.
Result is bizarrely (or subtly) wrong.
Back to step 1 to fix semantic errors.

4.  Enjoy the satisfaction of a working program!

5.  Too slow? Back to step 1 to try a different algorithm.

38

Debugging is Hard

39

 “ Debugging is twice as hard as writing the code in the first place.
 Therefore, if you write the code as cleverly as possible, you are,
 by definition, not smart enough to debug it. ” — Brian Kernighan

 “ There are two ways of constructing a software design.
 One way is to make it so simple that there are obviously no
 deficiencies. And the other way is to make it so complicated
 that there are no obvious deficiencies. ” — C. A. R. Hoare

40

Programming Style

Three Versions of the Same Program

41

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello, World");
 }
}

/**!
 * Compilation: javac HelloWorld.java!
 * Execution: java HelloWorld!
 *!
 * Prints "Hello, World".!
 * By tradition, this is everyone's first program.!
 *!
 * % java HelloWorld!
 * Hello, World!
 *!
 **/!

public class HelloWorld {!
 public static void main(String[] args) {!
 System.out.println("Hello, World");!
 }!
}!

public class HelloWorld { public static void main(String[] args)
{ System.out.println("Hello, World"); } }

Programming Style

Different styles are appropriate in different contexts.
!  Booksite.
!  Textbook.
!  COS 126 assignment.
!  Java system libraries.

Enforcing consistent style can:
!  Stifle creativity.
!  Confuse style rules with language rules.

Emphasizing consistent style can:
!  Make it easier to spot errors.
!  Make it easier for others to read and use code.
!  Enable IDE to provide useful visual cues.

42

Naming Conventions

Best practices.
!  Be consistent.
!  Choose descriptive variables names.
!  Obey Java conventions on upper/lowercase.

43

i() int() readInt()

fred ithTimeThroughLoop i

SEVEN DPW DAYS_PER_WEEK

isLeapYear

Factors.java

good worse bad

f.java factors.java

_$1l1lO0O1 leapyear

read an int from
standard input

loop-index variable

days per week

is it a leap year?

factoring program

purpose

Whitespace

Add whitespace to make your program more readable.

Best practices.

Best practices.
!  Be consistent.
!  One statement per line.
!  Space between binary operators.

44

public class Factors {!
 public static void main(String[] args) {!
 long n = Long.parseLong(args[0]);!
 for (long i = 2; i <= n; i++) {!
 while (n % i == 0) {!
 StdOut.print(i + " "); !
 n = n / i;!
 }!
 }!
 }!
}!

public class Factors{!
 public static void main(String[] args)
{!
 long n=Long.parseLong(args[0]);!
 for (long i=2;i<=n;i++){!
 while (n%i==0) {!
 StdOut.print(i+" "); !
 n=n/i;!
 }!
 }!
 }!
}!

Indenting

Indent and add blank lines to reveal structure and nesting.

Best practices.
!  Be consistent.
!  4 spaces per level of indentation.
!  Blank lines between logical blocks of code.

45

public class Factors {!

 public static void main(String[] args) {!
 long n = Long.parseLong(args[0]);!

 for (long i = 2; i <= n; i++) {!
 while (n % i == 0) {!
 StdOut.print(i + " "); !
 n = n / i;!
 }!
 }!

 }!
}!

public class Factors {!
public static void main(String[] args)
{!
long n = Long.parseLong(args[0]);!
for (long i = 2; i <= n; i++)!
{ while (n % i == 0) {!
 StdOut.print(i + " "); !
 n = n / i; }!
 }!
}!
}!

Comments

Annotate what or why you are doing something, rather than how.

Best practices.
!  Comment logical blocks of code.
!  Ensure comments agree with code.
!  Comment every important variable.
!  Comment any confusing code (or rewrite so that it's clear).
!  Include header that describe purpose of program, how to compile,

how to execute, any dependencies, and a sample execution.

46

// an end-of-line comment!

/***!
 * A block comment draws attention!
 * to itself.!
 **/!

COS 126 students:
also name, precept, and login

Comments

47

/***!
 * Compilation: javac Factors.java!
 * Execution: java Factors n!
 * Dependencies: StdOut.java!
 * !
 * Computes the prime factorization of n using brute force.!
 *!
 * % java Factors 4444444444!
 * 2 2 11 41 271 9091 !
 *!
 ***/!

public class Factors {!

 public static void main(String[] args) { !

 // integer to be factored!
 long n = Long.parseLong(args[0]);!

 // for each potential factor i of n!
 for (long i = 2; i <= n; i++) {!

 // if i is a factor of n, repeatedly divide it out!
 while (n % i == 0) {!
 StdOut.print(i + " "); !
 n = n / i;!
 }!
 }!
 }!
}!

Coding Standards

 De facto Java coding standard.

 Less pedantic version of Sun standard.

 Automated tool to enforce coding standard.

48

http://introcs.cs.princeton.edu/11style

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

http://checkstyle.sourceforge.net

COS 126 students:
follow these guidelines

used when you click
"Check all Submitted Files"

U.S.S. Grace Murray Hopper

49

