
COS 126 –
Atomic Theory of Matter

Goal of the Assignment

  Calculate Avogadro’s number
  Using Einstein’s equations
  Using fluorescent imaging

  Input data
  Sequence of images
  Each image is a rectangle of pixels
  Each pixel is either light or dark

  Output
  Estimate of Avogadro’s number

Assignment: Four Programs

  Blob data type
  Maximal set of connected light pixels

  BlobFinder
  Find all blobs in a JPEG image
  List all the big blobs (aka beads)

  BeadTracker
  Track beads from one image to the next

  Avogadro
  Data analysis to estimate Avogadro’s

number from the motion of beads

Atomic Theory Overview

  Brownian Motion
  Random collision of molecules
  Displacement over time fits a Gaussian

distribution

Atomic Theory Overview

  Avogadro’s Number
  Number of atoms needed to equal

substance’s atomic mass in grams
  NA atoms of Carbon-12 = 12 grams

  Can calculate from Brownian Motion
  Variance of Gaussian distribution is a function

of resistance in water, number of molecules

Blob.java
  API for representing particles (blobs) in water

  public Blob()
  public void add(int i, int j)
  public int mass() // number of pixels
  public double distanceTo(Blob b) // from center (average)
  public String toString()

  Only need three values to efficiently store
  Do not store the positions of every pixel in the blob

Center of mass,
and # of pixels

Blob Challenges

  Format numbers in a nice way
  String.format("%2d (%8.4f, %8.4f)",

mass, cx, cy);
  (Use same format in System.out.printf())
  E.g., "%6.3f" -> _2.354
  E.g., "%10.4e" -> 1.2535e-23

  Thoroughly test
  Create a simple main()

BlobFinder.java

  Locate all blobs in a given image
  And identify large blobs (called beads)

  API
  public BlobFinder(Picture picture, double tau)

  Calculate luminance (see Luminance.java, 3.1)
  Include pixels with a luminance >= tau (threshold)

  Find blobs with DFS (see Percolation.java, 2.4)
  The hard part, next slide…

  public int countBeads(int P)
  Counts the beads with at least P pixels

  public Blob[] getBeads(int P)
  Returns all beads with at least P pixels
  Array must be of size equal to number of beads

BlobFinder - Depth First Search
  Use boolean[][] array to mark visited
  Traverse image pixel by pixel

  Ignore already-visited pixels
  Dark pixel

  Mark as visited, continue

  Light pixel
  Create new blob, call DFS

  DFS algorithm
  Base case: simply return if

  Pixel out-of-bounds
  Pixel has been visited
  Pixel is dark (and mark as visited)

  Add pixel to current blob, mark as visited
  Recursively visit up, down, left, and right neighbors

BlobFinder - Depth First Search
  Use boolean[][] array to mark visited
  Traverse image pixel by pixel

  Ignore already-visited pixels
  Dark pixel

  Mark as visited, continue

  Light pixel
  Create new blob, call DFS

  DFS algorithm
  Base case: simply return if

  Pixel out-of-bounds
  Pixel has been visited
  Pixel is dark (and mark as visited)

  Add pixel to current blob, mark as visited
  Recursively visit up, down, left, and right neighbors

BlobFinder - Depth First Search
  Use boolean[][] array to mark visited
  Traverse image pixel by pixel

  Ignore already-visited pixels
  Dark pixel

  Mark as visited, continue

  Light pixel
  Create new blob, call DFS

  DFS algorithm
  Base case: simply return if

  Pixel out-of-bounds
  Pixel has been visited
  Pixel is dark (and mark as visited)

  Add pixel to current blob, mark as visited
  Recursively visit up, down, left, and right neighbors

BlobFinder - Depth First Search
  Use boolean[][] array to mark visited
  Traverse image pixel by pixel

  Ignore already-visited pixels
  Dark pixel

  Mark as visited, continue

  Light pixel
  Create new blob, call DFS

  DFS algorithm
  Base case: simply return if

  Pixel out-of-bounds
  Pixel has been visited
  Pixel is dark (and mark as visited)

  Add pixel to current blob, mark as visited
  Recursively visit up, down, left, and right neighbors

BlobFinder - Depth First Search
  Use boolean[][] array to mark visited
  Traverse image pixel by pixel

  Ignore already-visited pixels
  Dark pixel

  Mark as visited, continue

  Light pixel
  Create new blob, call DFS

  DFS algorithm
  Base case: simply return if

  Pixel out-of-bounds
  Pixel has been visited
  Pixel is dark (and mark as visited)

  Add pixel to current blob, mark as visited
  Recursively visit up, down, left, and right neighbors

  Use boolean[][] array to mark visited
  Traverse image pixel by pixel

  Ignore already-visited pixels
  Dark pixel

  Mark as visited, continue

  Light pixel
  Create new blob, call DFS

  DFS algorithm
  Base case: simply return if

  Pixel out-of-bounds
  Pixel has been visited
  Pixel is dark (and mark as visited)

  Add pixel to current blob, mark as visited
  Recursively visit up, down, left, and right neighbors

BlobFinder - Depth First Search

BlobFinder Challenges

  Data structure for the collection of blobs
  Store them any way you like
  But, be aware of memory use

BlobFinder Challenges

  Data structure for the collection of blobs
  Store them any way you like
  But, be aware of memory use

  Array of blobs?
  But, how big should the array be?

  Linked list of blobs?
  Memory efficient, but harder to implement

  Anything else?
  Submit your (extra) object classes

BeadTracker.java

  Track beads between
successive images

  Single main function
  Take in a series of images
  Output distance traversed by

all beads for each time-step
  For each bead found at time t+1,

find closest bead at time t and
calculate distance

  Not the other way around!
  Don’t include if distance > delta

pixels (new bead)

BeadTracker Challenges

  Reading multiple input files
  java BeadTracker 25 180.0 25.0 run_1/*.jpg

  Expands files in alphabetical order
  End up as args[3], args[4], …

 P
(size of Bead) tau

(Luminance threshold)

 delta
(max distance)

BeadTracker Challenges

  Reading multiple input files
  java BeadTracker 25 180.0 25.0 run_1*.jpg
  Expands files in alphabetical order
  End up as args[3], args[4], …

  Avoiding running out of memory
  Do not open all picture files at same time
  Only two need to be open at a time

  Recompiling
  Recompile if Blob or BlobFinder change

Avogadro.java

  Analyze Brownian motion of all
calculated displacements
  Lots of crazy formulas, all given, pretty

straightforward
  Be careful about units in the math, convert

pixels to meters, etc.

  Can test without the other parts working
  We provide sample input files
  Can work on it while waiting for help

Conclusion: Final Tips

  Avoiding subtle bugs in BlobFinder
  Don’t pass Blobs between private methods
  … it makes bugs hard to track down

  Common errors in BlobFinder
  NullPointerException
  StackOverflowError (e.g., if no base case)
  No output (need to add prints)

  Look at checklist Q&A

Conclusion: Final Tips

  Testing with a main()
  BlobFinder, BeadTracker, and Avogadro
  Must have a main() that can handle I/O

described in Testing section of checklist

  Timing analysis
  Look at feedback from earlier assignments
  BeadTracker is time sink, so analyze that

  How can you run 100 frames?

