
Proof of an Interdomain Policy

A Load-Balancing Multi-Homed Network

Andreas Voellmy
Yale University

New Haven, CT, U.S.A.
andreas.voellmy@yale.edu

ABSTRACT
Configuration of interdomain routing policies is notoriously
difficult, despite their relatively simple structure. We be-
lieve that this difficulty arises in part due to the gap be-
tween a network’s interdomain traffic goals and the inter-
domain routing policies which implement them. The gap
arises because BGP policy accomplishes network goals indi-
rectly, through interaction with the forwarding plane, and
because these goals can often only be met when neighboring
networks agree to implement certain policies.

We present a case study of the formal verification of a
real world BGP configuration, a load-balancing multi-homed
network discussed in a book on BGP configuration. We
invent a formal specification from the informal description
of the example and prove that the BGP policy meets this
specification. The goal of this study is to make explicit and
precise, the principles used in reasoning about BGP policy.
We aim to show not that verification is easy, but rather
that this reasoning is far from trivial and that the difficulty
in configuring BGP routers may lie not in writing policy,
but in understanding the effects of this policy in a complex
environment. The study also illustrates some of the bene-
fits of formal specification and verification for BGP policy,
namely that such efforts help in discovering ambiguities, in-
consistencies and implicit assumptions in specifications and
policies.

The case study and proofs have been formalized in the
Isabelle/HOL theorem prover and are available on the web.
1

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Correctness proofs, Formal methods; C.2.2 [Computer-

Communication Networks]: Routing protocols

1http://www.haskell.org/YaleHaskellGroupWiki/Networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SafeConfig’09,November 9, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-778-3/09/11 ...$10.00.

General Terms
Verification, Languages

1. INTRODUCTION
Configuration of interdomain routing policies is notori-

ously difficult, despite the relatively simple structure of rout-
ing policies. Indeed, it has been estimated that almost half
of all network outages are a result of network misconfigura-
tions [1].

We believe that this difficulty arises in part due to the gap
between a network’s interdomain traffic goals and the inter-
domain routing policies which implement them. The gap
arises because BGP policy accomplishes network goals indi-
rectly, through interaction with the forwarding plane, and
because these goals can often only be met when neighboring
networks agree to implement certain policies.

In this paper, we analyze a simplified version of a multi-
homed load-balancing policy presented in Zhang et al [3], a
Cisco book on BGP configuration. We choose this example
because it illustrates that the goal of BGP policy is often
to achieve a certain effect on traffic entering and leaving a
network, whereas the BGP policy directing route choices is
simply a mechanism to achieve these goals. In addition, we
hope that this case represents a typical and realistic scenario
for a multi-homed autonomous system. By formally proving
that the policy achieves its goals, we demonstrate the size
of the gap between mechanism and goal in an arguably real-
world example.

In order to accomplish our aims, we develop a highly sim-
plified configuration verification method consisting of:

• a specification language to describe the behavior of
various aspects of the network, including forwarding
and neighbor behavior;

• a policy language for describing the behavior of routers;

• first-order axioms describing the relationships between
the various forwarding, routing, and policy compo-
nents, thereby allowing formal proofs of policy cor-
rectness to be given and verified.

Following this, we present the details of the load-balancing
multi-homed network example. We specify and implement
the example network and bridge the gap with a formal proof
of correctness, which has been implemented and verified in
the Isabelle/HOL theorem prover. In the process, we iden-
tify an assumption underlying the correctness proof which
is not mentioned in Zhang et al [3], the source of the case

Home

100

OC3

200

DS3

Figure 1: The BGP connections for the example

specification.

study. That this assumption was uncovered during the pro-
cess of formal verification is an indication of the benefits
formal methods and tools may bring to the practice of in-
terdomain policy configuration.

2. THE EXAMPLE - INFORMALLY
In this section we informally introduce a simplified version

of the scenario presented in Zhang et al [3], a Cisco book on
BGP configuration. The example is for the configuration
of a network which is multi-homed to two providers, i.e. it
has two connections to external providers. The network is
connected to AS 100 by a high-bandwidth OC-3 (Optical
Carrier, 155 Mbit/s) link and to AS 200 by a lower band-
width DS-3 (Digital signal, 45 Mbit/s) link, as shown in
Figure 1.

The intended behavior is to forward most traffic over the
high-bandwidth OC-3 link to AS 100, while still utilizing the
lower-bandwidth DS-3 link to take advantage of the avail-
able bandwidth. To achieve this, the network aims to send
all traffic that is destined to a customer of AS 200, i.e. a
network that pays AS 200 for interdomain connectivity, over
the DS-3 link, while all other traffic, including traffic to cus-
tomers of 100, should traverse the OC-3 link. This presum-
ably will result in most traffic using the OC-3 link through
AS 100, since most destinations will not be customers of AS
200. On the other hand, the traffic that will be sent over the
DS-3 link will be destined to customers of AS 200, and thus
this path will be shorter than a path through AS 100. This
policy, therefore attempts to achieve some load balancing
while also favoring short routes.

In order to implement this goal, the network will need to
differentiate between routes that are for customers of AS
100 or AS 200 and those that are not customers. Rather
than fixing a static set of networks that are customers of
each provider AS 100 and 200, the network requests what
is known as partial and default routes from both AS 100
and AS 200, meaning that AS 100 and AS 200 will both
advertise a route with a default prefix and in addition will
announce routes with prefixes belonging to all and only cus-
tomers of AS 100 and AS 200, respectively. In other words
all routes with non-default prefixes announced by 100 and
200 will be customers of 100 and 200 respectively, and con-
versely, all customers of 100 and 200 will have a route with
non-default prefix announced. This scheme allows the home
network to determine when a route is for a customer of 100
or 200, namely when the route carries a non-default prefix
and is advertised by 100 or 200, respectively, without stati-
cally specifying the customers of 100 and 200.

The policy given in Zhang et al [3] is to rank routes learned
over the OC-3 at a high preference level, high = 120, while
routes learned over the DS-3 are given preference low = 100.
Zhang et al justify this policy by explaining that this will

have the effect of preferring the OC-3 link for the default
route and routes to customers of AS 100 (since routes for
customers of AS 100 will be announced over the OC-3 link).
On the other hand, routes over the DS-3 link will be pre-
ferred for networks that are customers of 200 and not cus-
tomers of 100.

Unfortunately, the example as stated above has several
problems. First of all, the stated goal is impossible to real-
ize if there exists a single network that is a customer of both
100 and 200. This is because, with the network given, traffic
for any particular address will leave the network over only
one of the two links. However, the goal states that traffic
for an address that belongs to a customer of both 100 and
200 should traverse both the OC-3 link and the DS-3 link,
which is impossible. Therefore, the specification needs to be
revised, and there are several possible ways to do so. One
possibility is to add an extra assumption regarding the im-
possibility of a network being a customer of both 100 and
200. Another possibility is to weaken the specification so
that it only require traffic for customers of 100 that are not
customers of 200 to traverse the OC-3 link, and similarly for
traffic for customers of 200 that are not customers of 100 to
traverse the DS-3 link. With this revision, the specification
places no requirement on traffic for customers of both 100
and 200. A third possibility is to require all traffic to cus-
tomers of 100 to traverse the OC-3 link, while only traffic for
customers of 200 that are not customers of 100 to traverse
the DS-3 link.

We pursue the second and third options in the verification
of the example in Section 4. Unfortunately, we find that we
are unable to verify the specification as stated in the third
option, because it may in fact not hold. We can show this by
the following counterexample to the specification. Suppose
there is a network asn that is a customer of both 100 and
200. Hence, by our assumptions about AS 100 and AS 200,
AS 100 will announce a route r with prefix p to network
asn and AS 200 will announce a route r′ with prefix p′ to
network asn. Suppose further that prefix p′ is more specific
(i.e. a longer prefix) than p and that r and r′ are the best
routes for prefixes p and p′ respectively. Since BGP installs
the best route for each prefix in the forwarding table, BGP
will install both r and r′, even though r is ranked at 120 and
r′ is ranked at 100. Now consider an address a contained
in network asn, and suppose it is in prefix p′. Traffic to
address a will then be forwarded according to route r′, since
p′ is more specific than p, and hence will traverse link DS-3.
This violates the specification as stated in the third option.
We present the details of this example in Section 4.1 in terms
of the language we present below.

In order to achieve the third specification, then, we need
to revise it by adding an assumption asserting that, if a
network is a customer of both AS 100 and AS 200 and if it
is announced by both AS 100 and AS 200, then the routes
announced carry the same prefix. With this assumption we
are able to verify the third specification.

3. LANGUAGE
In this section, we develop a basic formal language in

which statements describe forwarding behavior, BGP state
and BGP policy. With this language, we can specify desired
network behaviors as well as policy implementations. The
language uses set theory and natural numbers in a basic way,
and we take as given the theories describing the behavior of
these domains.

The model we present here is highly simplified and does
not model BGP accurately. Some of the simplifications we
make include a simple decision process, the assumption that
every router has the same policy and that this combined with
the simple decision process results in every router having the
same ordering over routes, and that every router learns of all
routes announced to the network. These simplifications only
make reasoning about BGP policies easier, which enhances
our claim that reasoning about the effects of BGP policy
can be very difficult.

To begin with, our language includes a set of addresses,
Addresses, and a finite set of address prefixes, Prefixes. Al-
though Internet addresses are 32-bit integers, we model them
simply as natural numbers, i.e. Addresses = N. An Internet
prefix p is a binary sequences of length at most 32 and de-
notes the set of addresses a whose binary expansion has p
as a prefix. Prefixes have an important property: given an
address a and a collection of prefixes P containing a, there
exists a ⊆-least, i.e. most specific, prefix containing address
a. This property holds because each p ∈ P is a prefix of
a and therefore if p, p′ ∈ P then either p is a prefix of p′

or vice versa. Since they are linearly ordered by prefix and
the collection of prefixes is finite, there is a minimum pre-
fix. This property is the only prefix-specific property we will
need, so we model prefixes abstractly as a set Prefixes, whose
elements are subsets of addresses, which satisfies the above-
mentioned property. This allows us to use the set-theoretic
predicates ∈ to assert that an address is contained in a pre-
fix and ⊆ to assert containment of prefixes, and we preserve
the above property by asserting it as an axiom:

Axiom 1. For any set of prefixes P ⊆ Prefixes and address
a ∈ Addresses,

(P 6= ∅ ∧ (∀p ∈ P → a ∈ p)) → ∃p ∈ P.[∀p′ ∈ P.p ⊆ p′]

We define a default prefix, 0.0.0.0/0, as the set of all ad-
dresses, i.e. 0.0.0.0/0 = Addresses.

The language includes a finite set of neighboring networks
Neighbors, and a finite set of links Links, and a function
linkTo such that linkTo(l) is the neighbor which is connected
to link l.

BGP routes are modelled as the set Route = Prefixes ×
Seq(AS) ×Links, where Seq(AS) is the set of finite sequences
of AS numbers. We use a function length which gives the
length of a sequence.

The language includes a finite set Announce ⊆ Neighbors×
Route that models the routes announced by neighbors, and
we assert the finiteness of Announce as an axiom:

Axiom 2. Announce ⊆ Neighbors × Route and is finite.

We define the set Knows, the set of BGP routes known to
the network (from all neighbors), in terms of Announce as:

Definition 1. Knows = {rte | ∃nbr . Announce(nbr, rte)}

We require that any route announced by a neighbor tra-
verse a link to that neighbor, and we assert this with an
axiom:

Axiom 3.

(nbr, (s, p, l)) ∈ Announce → linkTo(l) = nbr

Although BGP policy and route choice are complex in
practice, we provide a highly simplified model which has
just enough detail to specify and verify our case study. For
our purposes, we need a function rank : Route → N which
gives the numeric preference value for each route, and two
tie-breaking orderings - a strict ordering <paths on paths that
is also linear for any set of paths having some fixed length
(e.g. the ordering could compare the AS number of the first
differing AS in the path), and a strict linear ordering <Links

on links that is used for breaking ties. An order < is strict
if it is asymmetrical, i.e. x < y implies y ≮ x for any x and
y, and an order < is linear if exactly one of x < y, x = y,
y < x holds for any x, y. We assert strictness and linearity
of <Links and <paths with the following axioms:

Axiom 4. <Links is a strict linear order on Links.

Axiom 5. <paths is a strict order on Seq(AS), i.e. AS
paths, and, for any natural number, n, its restriction to
paths of length n is a linear order.

Given these, we define a prefix-wise linear order, <Route

on routes as:

Definition 2. For all s, p, l, s′, p′, l′, (s, p, l) <Route (s′, p′, l′)
holds if and only if s = s′ and

(rank(s, p, l) > rank(s′, p′, l′))∨

(rank(s, p, l) = rank(s′, p′, l′)∧

(length(p) < length(p′))∨

(length(p) = length(p′) ∧ p <paths p′)∨

(p = p′ ∧ l <Links l′)

)

We claim, without proof, that <Route is a prefix-wise strict
linear order:

Definition 3. For any prefix s, define Routes = {(s′, p′, l′) ∈
Route | s = s′}.

Lemma 1. For any prefix s (i.e. s ∈ Prefixes), the set
Routes is strictly and linearly ordered by <Route.

We can then define a set Best, where rte ∈ Best asserts
that rte is the best known route among those with the same
prefix. We define Best as:

Definition 4.

Best ={(s, p, l) ∈ Knows |

∀p′l′ [Knows(s, p′, l′) → (s, p, l) ≤Route (s, p′, l′)]}

Given these definitions, we can prove properties that will
be important in correctness proofs later:

Lemma 2. Best ⊆ Knows

Proof. Obvious.

Lemma 3. If (s, p, l) ∈ Knows, then ∃p′l′ . (s, p′, l′) ∈
Best.

Proof. Since (s, p, l) ∈ Knows, the set
{(s′, p′, l′) ∈ Knows | s = s′} 6= ∅ and is finite. Since the
routes in the set all have the same prefix, the set is linearly
ordered by ≤Route. Since any nonempty, finite subset of a
linearly ordered set has a least element, there exists a least
element (s, p′, l′) in the set and this is in Best.

Lemma 4. If (rank(s, p, l) > rank(s, p′, l′) and (s, p, l) ∈
Knows, then (s, p′, l′) /∈ Best.

Proof. Even if (s, p′, l′) ∈ Knows, since (s, p, l) ∈ Knows
and (s, p, l) <Route (s, p′, l′), (s, p′, l′) /∈ Best.

Routers forward traffic to an address to the most specific
route, and so we define the set MostSpecific, as follows, with
the help of a definition of KnownPrefix:

Definition 5.

KnownPrefix(a) = {s | ∃p, l . (s, p, l) ∈ Knows ∧ a ∈ s}

Definition 6.

MostSpecific = {(a, s) | s ∈ KnownPrefix(a)∧

∀s′ . s′ ∈ KnownPrefix(a) → s ⊆ s′}

That is, (a, s) ∈ MostSpecific if and only if the most specific
known route to address a has prefix s.

Given these definitions we know have useful lemma, stat-
ing that if a route to an address is known, then there is a
best and most specific one:

Lemma 5. If s ∈ KnownPrefix(a), then
∃s′, p′, l′ . (s′, p′, l′) ∈ Best ∧ (a, s′) ∈ MostSpecific ∧ s′ ⊆ s.

Proof. By the assumption, the set {s′ | ∃p′, l′[(s′, p′, l′) ∈
Knows ∧ a ∈ s′} is nonempty. Therefore, by Axiom 1, there
is a ⊆-minimal prefix s′ of KnownPrefix(a) and hence s′ ⊆ s.
Therefore, (a, s′) ∈ MostSpecific, by definition 6. Then by
Lemma 3, we have (s′, p′′, l′′) ∈ Best for some p′′, l′′, and the
conclusion is established.

Finally, we define the predicate Egress : Addresses×Links,
which gives the egress link, i.e. the link over which packets
will flow, for an address (if it exists):

Definition 7.

Egress(a, l) = ∃s, p . (a, s) ∈ MostSpecific ∧ (s, p, l) ∈ Best

The Egress predicate thus reflects the forwarding behavior
of the network with regard to external addresses. The spec-
ification we develop later will be given in terms of assertions
about the Egress predicate.

Figure 2 summarizes the language.

4. MULTI-HOMED LOAD BALANCING
NETWORK

In this section we formally model the example presented
informally in Section 2 and verify the second and third ver-
sions of the specification mentioned in that section. We
begin by formalizing the topology as follows:

Sets: Prefixes,Neighbors, Links,Route,Announce
Functions: linkTo, rank
Predicates: <Links, <paths

Axioms: 1-5
Defined terms: Knows,Best,MostSpecific,Egress.

Figure 2: Summary of the language.

Definition 8. Neighbors = {100, 200}

Definition 9. Links = {oc3, ds3}

Definition 10.

linkTo(oc3) = 100

linkTo(ds3) = 200

If we momentarily take for granted the existence of a pred-
icate Cust, where Cust(a,nbr) asserts that address a is in a
network that is a customer of nbr, then we can formalize the
second and third specifications in Section 2 as γ2 ∧ γ3 and
γ1 ∧ γ2 ∧ γ3, respectively, where:

Definition 11.

γ1 = ∀a [(Cust(a, 100) ∧ Cust(a, 200)) → Egress(a,oc3)]

γ2 = ∀a [(¬Cust(a, 100) ∧ Cust(a, 200)) → Egress(a,ds3)]

γ3 = ∀a [¬Cust(a, 200) → Egress(a,oc3)]

Note that γ3 describes the case of traffic to destinations that
are customers of neither 100 nor 200, since for such traffic
¬Cust(a, 200) will hold.

We can describe the behavior of 100 and 200 as
PartialAndDefault(100) ∧ PartialAndDefault(200), where

Definition 12.

PartialAndDefault(asn) =PartialAnnounced(asn) ∧

DefaultAnnounced(asn)

Definition 13.

DefaultAnnounced(asn) =

∃p, l . (asn, (0.0.0.0/0, p, l)) ∈ Announce

Definition 14.

PartialAnnounced(asn) = [∀a .Cust(a, asn) ↔

(∃s, p, l . (asn, (s, p, l)) ∈ Announce ∧ a ∈ s ∧ s ⊂ 0.0.0.0/0)]

Note that this description of the behavior of AS 100 and AS
200 completely determines the Cust predicate in the case of
this example without statically determining precisely which
networks are customers.

The policy given in Zhang et al [3] is to rank routes learned
over the OC-3 at a high preference level, high = 120, while
routes learned over the DS-3 are given preference low = 100,
and we can formalize this policy as:

Definition 15.

rank(s, p, oc3) = 120

rank(s, p, ds3) = 100

This has the effect of preferring the OC-3 link for the default
route and routes to non-customers of AS 200 only, while
preferring routes over the DS-3 link for networks that are
customers of 200 and not customers of 100. In fact, we
prove these assertions in the following lemmas. We start
with a lemma that will be used later.

Lemma 6.

PartialAndDefault(asn) ⊢ ∀a.Cust(a,asn) →

∃s, p, l[(s, p, l) ∈ Best ∧ (a, s) ∈ MostSpecific ∧

s ⊂ 0.0.0.0/0]

Proof. Since PartialAndDefault(asn) and Cust(a, asn),
we have Announce(asn, (s, p, l)) ∧ a ∈ s ∧ s ⊂ 0.0.0.0/0)
for some s, p, l. By definition of Knows we have (s, p, l) ∈
Knows and therefore by Lemma 5, we have (s′, p′, l′) ∈
Best ∧ (a, s′) ∈ MostSpecific ∧ s′ ⊆ s for some s′, p′, l′.
By transitivity of ⊂, we have (s′, p′, l′) ∈ Best ∧ (a, s′) ∈
MostSpecific ∧ s′ ⊂ 0.0.0.0/0.

Lemma 7.

PartialAndDefault(asn) ⊢

Cust(a, asn) → ∃l . (Egress(a, l) ∧ Cust(a, linkTo(l)))

Proof. By Lemma 6 and Cust(a, asn), we have (s, p, l) ∈
Best ∧ (a, s) ∈ MostSpecific ∧ s ⊂ 0.0.0.0/0, and hence
Egress(a, l).

Hence (s, p, l) ∈ Best ⊆ Knows ∧ (a, s) ∈ MostSpecific
and so (asn′, (s, p, l)) ∈ Announce for some asn’, a ∈ s,
s ⊂ 0.0.0.0/0 and linkTo(l) = asn′. Thus Cust(a, linkTo(l))
by Definition 14.

Now we demonstrate that γ2 and γ3 hold in the following
two lemmas.

Lemma 8. Traffic for addresses that belong to customers
of AS 200 only, use the ds3 link (i.e. γ2 holds):

{PartialAndDefault(100), PartialAndDefault(200)} ⊢

∀a[(Cust(a, 200) ∧ ¬Cust(a, 100)) → Egress(a, ds3)]

Proof. Assume PartialAndDefault(100),
PartialAndDefault(200), Cust(a, 200) and ¬Cust(a, 100). By
Lemma 7 we have Egress(a, l) and
Cust(a, linkTo(l)). Either l = ds3 or l = oc3.

If l = oc3, then linkTo(l) = 100 and Cust(a, 100), a con-
tradiction. Therefore l = ds3 and Egress(a, ds3).

Lemma 9. Use oc3 link for addresses that do not belong
to customers of 200 (i.e. γ3 holds):

{PartialAndDefault(100), PartialAndDefault(200)} ⊢

∀a[¬Cust(a, 200) → Egress(a, oc3)]

Proof. Assume PartialAndDefault(100),
PartialAndDefault(200), ¬Cust(a, 200), and let a be an ar-
bitrary address.

Since DefaultAnnounced(100), we have

(100, (0.0.0.0/0, p,oc3)) ∈ Announce

for some path p. By Lemma 5 we get (s′, p′, l′) ∈ Best,
(a, s′) ∈ MostSpecific, and s′ ⊆ 0.0.0.0/0 for some s′, p′, l′,
and hence (asn, (s′, p′, l′)) ∈ Announce for some asn.

Suppose l′ = ds3. By Axiom 3, we get asn = 200. Either
s ⊂ 0.0.0.0/0 or s = 0.0.0.0/0.

If s ⊂ 0.0.0.0/0, then (200, (s′, p′, ds3)) ∈ Announce, a ∈
s′, s′ ⊂ 0.0.0.0/0 and hence Cust(a, 200) by assumption of
PartialAnnounced(200), contradicting our assumption. Hence
s = 0.0.0.0/0.

By definition of rank, we have

rank(s, p′, oc3) > rank(s, p, ds3)

and in particular we have

rank(0.0.0.0/0, p′, oc3) > rank(0.0.0.0/0, p, ds3)

By assumption of PartialAnnounced(100), we have

(100, (0.0.0.0/0, p′, oc3)) ∈ Announce

and hence (0.0.0.0/0, p′, oc3) ∈ Knows. Then by Lemma 4,
we have (s, p, ds3) /∈ Best, a contradiction. Hence l 6= ds3.

Therefore l = oc3 and Egress(a, oc3).

At this point, we have verified the second specification,
namely γ2∧γ3. As mentioned in Section 2, we cannot verify
the third specification, γ1 ∧ γ2 ∧ γ3 because there is in fact
a counterexample, which we present more precisely below.

4.1 Counterexample
The third specification, γ1∧γ2∧γ3, fails, because without

further assumptions, γ1 fails to hold in every situation. For
example, consider the following set of announcements:

Announce = {(100, (0.0.0.0/0, [100], oc3)),

(100, (1.0.0.0/8, [100, 300], oc3)),

(200, (0.0.0.0/0, [200], ds3)),

(200, (1.0.0.0/16, [200, 300], ds3))}

It is easy to verify that Axioms 1-5 are satisfied, and that
PartialAndDefault(100) and PartialAndDefault(200) are sat-
isfied, since both 100 and 200 have announced default routes.

Now, we can compute Knows and Best given this set of
announcements, where we are assuming rank is defined as in
Definition 15 when computing Best:

Knows = {(0.0.0.0/0, [100], oc3),

(1.0.0.0/8, [100, 300], oc3),

(0.0.0.0/0, [200], ds3),

(1.0.0.0/16, [200, 300], ds3)}

Best = {(0.0.0.0/0, [100], oc3),

(1.0.0.0/8, [100, 300], oc3),

(1.0.0.0/16, [200, 300], ds3)}

Now let address a = 1.0.0.0. Since
(a, 1.0.0.0/16) ∈ MostSpecific, we get Egress(a,ds3). On the
other hand, by definition of Cust, we have Cust(a, 100) and
Cust(a, 200) and so γ1 requires that Egress(a,oc3). There-
fore, we fail to satisfy γ1 under this set of announcements.

4.2 Adding an Assumption
We therefore need to formulate an extra assumption in

order to verify the third specification, γ1 ∧ γ2 ∧ γ3. We do
this using the following definition, which asserts that any
routes with non-default and overlapping prefixes announced
by both networks are in fact equal.

Definition 16.

CustomersAnnouncedIdentically = ∀a, s, p, l, s′, p′, l′

[((100, (s, p, l)) ∈ Announce ∧ (200, (s′, p′, l′)) ∈ Announce

∧ a ∈ s ∧ a ∈ s′

∧ s 6= 0.0.0.0/0 ∧ s′ 6= 0.0.0.0/0)

→ s = s′]

We now add this assumption and prove the remaining part
of the specification:

Lemma 10.

{PartialAndDefault(100),

PartialAndDefault(200),

CustomersAnnouncedIdentically}

⊢ Cust(a, 100) → Egress(a, oc3)

Proof. Assume Cust(a, 100). Then we have, for some
s, p, l, (100, (s, p, l)) ∈ Announce, a ∈ s, and s ⊂ 0.0.0.0/0.
By Lemma 7 we have Egress(a, l′) and Cust(a, linkTo(l′)).
Either l′ = ds3 or l′ = oc3.

Suppose l′ = ds3. Then Cust(a, 200) and so, for some
s′, p′, (200, (s′, p′, l′)) ∈ Announce. We therefore have the
premise of the CustomersAnnouncedIdentically assumption,
and hence we have s = s′. Since, (by definition of rank),
rank(s, p′, ds3) < rank(s, p, oc3) and (s, p,oc3) ∈ Knows,
we have (s, p′, ds3) /∈ Best (by Lemma 4), contradicting
(s′, p′, l′) = (s, p′, ds3) ∈ Best. Hence l′ 6= ds3.

Therefore l′ = oc3 and Egress(a,oc3).

Given these three lemmas, we can now verify our specifi-
cation as originally given:

Theorem 1.

{PartialAndDefault(100),

PartialAndDefault(200),

CustomersAnnouncedIdentically}

⊢ σ1 ∧ σ2

Proof. σ1 holds by Lemma 8. σ2 holds since, if
Cust(a, 100), then Egress(a, oc3) by Lemma 10, while if
¬Cust(a, 200), then Egress(a, oc3) by Lemma 9.

5. FORMALIZATION
We have formalized the above language and proofs in the

Isabelle/HOL theorem prover 2, and our source is located
on our web page 3. The language and proofs in the Is-
abelle/HOL formalization are essentially the same as those
presented here, but are adapted to Isabelle’s typed higher-
order logic. The formalization in Isabelle/HOL gives us high
confidence that we have expressed the relevant features and
axioms of the language and that we have correctly verified
the specification of the case study.
2http://isabelle.in.tum.de
3http://www.haskell.org/YaleHaskellGroupWiki/Networks

6. CONCLUSION AND FUTURE WORK
The previous sections illustrate a case study in which the

desired behavior of the network with regard to interdomain
traffic is more naturally expressed in terms of forwarding
behavior than in terms of route preferences. We describe in-
terdomain forwarding behavior with assertions regarding the
Egress predicate, describe our policy with assertions regard-
ing the rank function, and prove that the implementation
achieved the specification, subject to certain assumptions,
using only logical arguments supplemented with our defini-
tions and axioms.

This case study illustrates where the difficulty in configu-
ration lies, namely in the gap between specification and im-
plementation. In this case, both the network specification
and the policy implementation are simple, yet the justifi-
cation for the correctness of the policy is not at all trivial.
The justification is not deep or complex, but it does require
detailed and careful considerations which may be overlooked
by operators, especially given the apparently trivial specifi-
cation and implementation.

The complications in the correctness arguments arise pri-
marily due to the nontrivial behavior of forwarding and the
fact that routing policy is applied to each prefix indepen-
dently. Traffic is forwarded along the most specific route
and this requires showing that the most specific and best
route uses a particular link. On the other hand, the prefix-
wise application of policy makes the specification impossible
to achieve without the CustomersAnnouncedIdentically as-
sumption (or something like it), which may be an assump-
tion of questionable validity. If interdomain policy included
the ability to state something to the effect of “only use a
route for non-default prefix p from 200 if there is no known
non-default route containing p”, then we could have imple-
mented the policy without any unreasonable assumptions on
neighbor behavior.

We take the fact that certain ambiguities in the speci-
fication and certain possibilities of network behavior were
unmentioned in the original case study to be evidence that
understanding network behavior is non-trivial, and that pro-
viding an explicit network model and reasoning principles
will help in safely configuring networks with regard to inter-
domain traffic.

An interesting direction for future work would be in com-
bining the verification techniques with policy languages sup-
porting the expression of policy functions as a means for ex-
pressing policy templates, such as Nettle [2], i.e. policy frag-
ments which when applied to arguments yield policies. Just
as introducing functions or procedures in a programming
language increases the need for specifying the abstract be-
havior of such components, the introduction of policy func-
tions increases the need to specify the behavior of networks
under the application of such policies. In particular, it would
be interesting to express the abstract principles used in the
load balancing case study presented here, to express the pat-
tern as a policy function, and to describe the resulting func-
tion with assertions in a specification language similar to the
one we have provided here. Such assertions could be used
either in verification, or perhaps more likely, they could be
checked on random or systematically generated sets of an-
nouncements satisfying the above axioms. While such test-
ing would of course not prove the absence of errors, it would
provide a low-effort technique for increasing confidence in
the correctness of policies.

7. ACKNOWLEDGEMENTS
Thanks to Paul Hudak, Richard Yang, and Vijay Ra-

machandran for encouraging this work and to Antonis Stam-
poulis for helpful advice on formalizing the work in Isabelle/HOL.
This research was supported in part by NSF grant CCF-
0728443 and DARPA grant STTR ST061-002 (a subcontract
from Galois, Inc.).

8. REFERENCES
[1] R. Mahajan, D. Wetherall, and T. Anderson.

Understanding bgp misconfiguration. SIGCOMM
Comput. Commun. Rev., 32(4):3–16, 2002.

[2] A. Voellmy and P. Hudak. Nettle: a language for
configuring routing networks. In Domain-Specific
Languages, IFIP TC 2 Working Conference, volume
5658, pages 211–235. Springer Berlin / Heidelberg, July
2009.

[3] R. Zhang and M. Bartell. BGP Design and
Implementation. Cisco Press, 2003.

