CS 598D Formal Methods in Networking Princeton University

Lecture 17-18:

Ehab Al-Shaer

Cyber Defense and Network Assurability (CyberDNA) Center School of Computing & Informatics University of North Carolina, Charlotte, NC

April 5,9, 2010

Acknowledgment: Will Marrero, Hazem Hamed, Adel El-Atawy, and Taghrid Samak

Lecture 18 (ConfigChecker):

Network Configuration in a Box: BDDbased Model Checker Approach for

Applications:

- Reachability Analysis
- Security Verification
- Routing Protocols Debugging
- QoS Policy Evaluation and Debugging
- Quantifying System Reliability/Resiliency

Limitations and Objectives

- Global & Comprehensive Abstraction:
 - end-to-end verification of network configuration reachability and security requirements,
 - Including all network devices such as routers (unicast and multicast), firewalls, NAT, and IPSec.
- Extensibility
 - Canonical encoding of network access control configuration representation including forwarding/routing, translation, transformation and filtering.
- Scalability
 - Implementing a scalable model checker tool that can handle thousands of devices and millions of configuration rules
- Verifiability
 - Using property-based verification to establish soundness and completeness of network reachability of security requirements

Why Symbolic?

Symbolic Model Checking

Any model checking method that represents state sets *symbolically* as opposed to *explicitly* enumerating states, usually using OBDDs.

Motivation for model checking

- Hardware and software become increasing complicated today. Verification of correctness of them is critical
- Deductive verification is widely used by it is time consuming and can only done by experts
- Model checking can be used to verify finite state concurrent systems. It can be performed *automatically*.
- CTL and OBDD based model checking is very efficient in many cases and it can cope with the state explosion problem.

Modeling systems: Kripke structure

- Let *AP* be a set of atomic propositions, A *Kripke structure M* over *AP* is a four tuple $M=(S, S_0, R, L)$ where
- *S* is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states
- $R \subseteq S \times S$ is a transition relation that must be total, that is for every state *s* in *S* there is a *s*' such that R(s,s')
- $L: S \rightarrow 2^{AP}$ is a function that labels each state with the set of atomic propositions true in the state

Temporal operators and CTL

- **Temporal logic:** describes sequences of transitions between state but time is not mentioned explicitly, instead, a formula will specify that "eventually" some designated state is reached or error state is "never" entered.
- **Computation Tree Logic (CTL)** is a branching-time logic, meaning that its model of time is a tree-like structure in which the future is not determined; there are different paths in the future, any one of which might be an actual path that is realized.
- CTL is a subset of CTL*
- The operators in CTL* includes:
 - Quantifiers over paths
 - A (ϕ) All: ϕ has to hold on all paths starting from the current state.
 - **E** (ϕ) **E**xist: there exists at least one path starting from the current state where ϕ holds

From [MC]

- Temporal specific quantifiers
 - $\mathbf{X} \boldsymbol{\phi}$ Next: $\boldsymbol{\phi}$ has to hold at the next state.
 - $\mathbf{G} \boldsymbol{\phi}$ **G**lobally: $\boldsymbol{\phi}$ has to hold on the entire subsequent path.
 - $\mathbf{F} \boldsymbol{\phi}$ Finally: $\boldsymbol{\phi}$ eventually has to hold (somewhere on the subsequent path)
 - $\Phi U \psi$ Until: ϕ has to hold until ψ hold. ψ eventually will be verified
 - $\Phi \mathbf{R} \mathbf{\psi}$ Release: ϕ has to hold before ψ ceases to hold.

Model Checking Goal

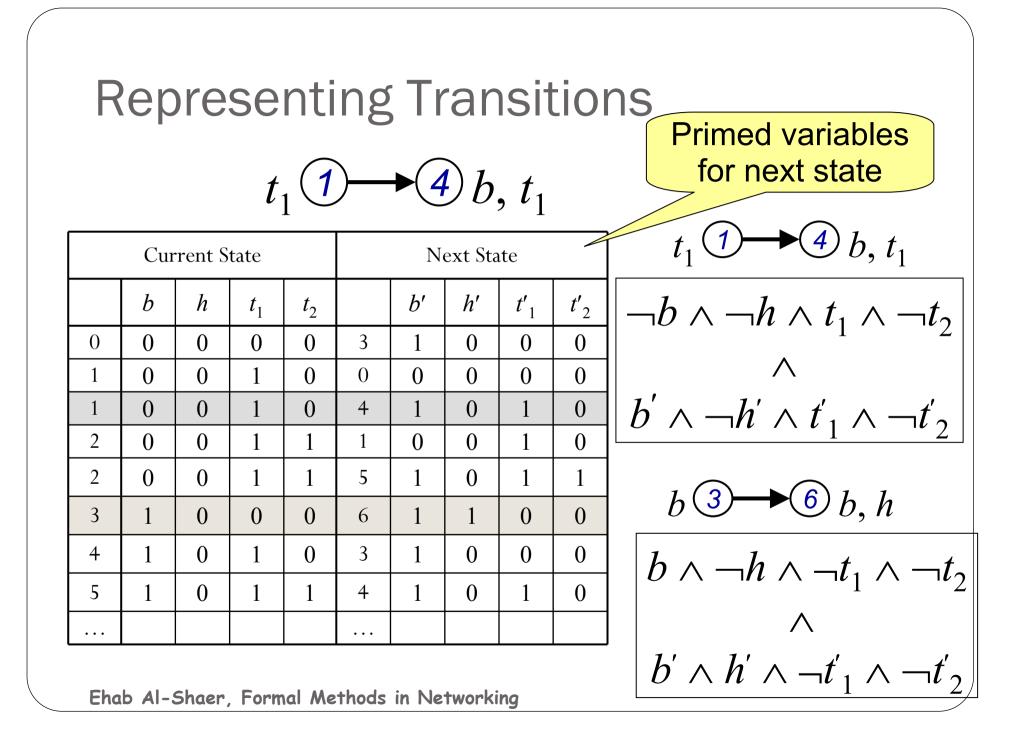
Given:

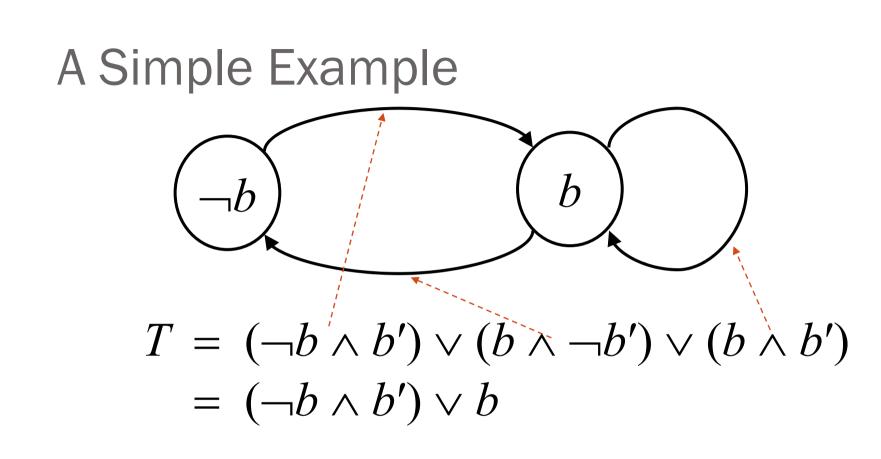
- Kripke-Structure *K*
- CTL Formula φ

Goal:

Identify the *set of states* of K where φ is true.

 $\neg \phi \quad \phi \land \psi \quad \dots$ $AX \quad \phi \quad EX \quad \phi$ $AG \quad \phi \quad EG \quad \phi$ $AF \quad p \quad EF \quad \phi$ $A(\phi \quad U \quad \psi)$ $E(\phi \quad U \quad \psi)$


p


Calculating State Sets

• State sets of a Kripke-structure can be represented as an OBDD!

$$\neg \land \lor \rightarrow \leftrightarrow$$

- Propositional connectives can be evaluated using OBDD algorithms.
- What about temporal connectives?

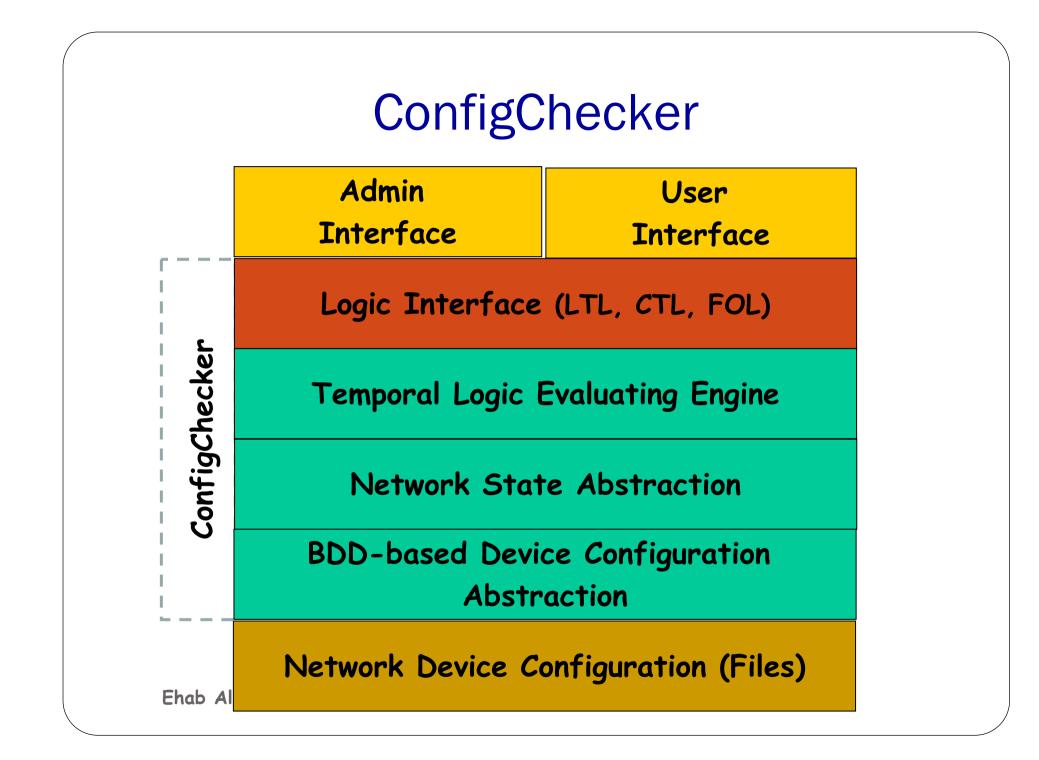
Calculating EX

$$\mathbf{E}\mathbf{X}\neg b = \exists b' \left(T \land \neg b'\right)$$

Basic CTL operations

- AX and EX
- **AF** and **EF**
- AG and EG
- AU and EU
- **AR** and **ER**

Each of the ten operators can be expressed in terms of three operators **EX**, **EG**, and **EU(** means logical and)


- $\mathbf{A}\mathbf{X}f \equiv \mathbf{T} \mathbf{E}\mathbf{X}(\mathbf{T}f)$
- $\mathbf{EF} f \equiv \mathbf{E} [True \mathbf{U} f]$
- $\mathbf{AG} f \equiv \mathbf{T} \mathbf{EF}(\mathbf{T} f)$
- **AF** $f \equiv \neg \mathbf{EG}(\neg f)$
- $\mathbf{A}[f\mathbf{U}_{g}] \equiv \mathbf{P}[\mathbf{P}_{g}\mathbf{U}(\mathbf{P}_{g} \mathbf{P}_{g})] = \mathbf{E}\mathbf{G} \mathbf{P}_{g}$
- $\mathbf{A} [f \mathbf{R}_{g}] \equiv \mathbf{F} \mathbf{E} [\mathbf{T}_{f} \mathbf{U} \mathbf{T}_{g}]$
- $\mathbf{E}[f\mathbf{R}_{g}] \equiv \mathbf{A}[\mathbf{T} f \mathbf{U}_{T}g]$

Some examples

- EF(*Start* and ¬ *Ready*) : It is possible to get a state where
 Start holds but Ready does not hold
- **AG**(*Req* → **AF** *Ack*): If a request occurs, then it will be eventually acknowledged
- **AG**(**AF** *DeviceEnabled*): The proposition DeviceEnabled holds infinitely often on every computation path
- **AG**(**EF** *Restart*): From any state it is possible to get to the Restart state

Examples in Networks

- A state satisfies EX(loc=10.10.10.10) if there is a next state in which the packet in location with address 10.10.10.10
- A state satisfies *AX*(*loc*=10.10.10.10) if in all next states, the packet is at location 10.10.10.10
- A state satisfies EF(loc=10.10.10.10) if there is a path from this state along which eventually the location of the packet is 10.10.10.10
- A state satisfies AF(loc=10.10.10.10) if along all paths from this state, eventually the packet will be in 10.10.10.10

- The network is modeled as a state machine
 - each state determined by the packet header information and packet location on the network
 - States = Locations X Packets
 - The *characterization function* to encode the state of the network in the basic model (abstracting payload)

 $\sigma: \mathbf{IP_s} \times \mathbf{port_s} \times \mathbf{IP_d} \times \mathbf{port_d} \times \mathbf{loc} \rightarrow \{\mathbf{true, false}\}$

IP_s the 32-bit source IP address

port_s the 16-bit source port number

 IP_d the 32-bit destination IP address

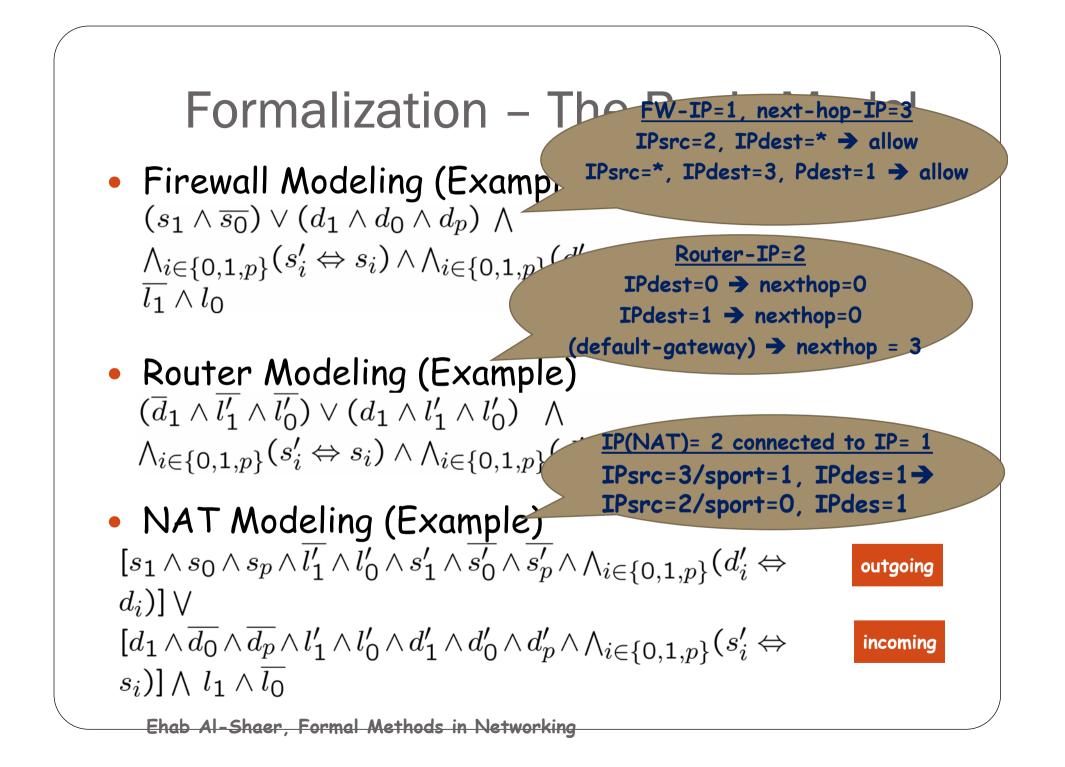
- $port_d$ the 16-bit destination port number
- loc the 32-bit IP address of the device currently process-

ing the packet

- Network devices are modeled based on the packet matching semantic and packet transformation
 - Each rule consists of a condition (Ci) and an action (a): Ci \rightarrow a
 - Policy are set of rules matched sequentially with single- or multitrigger actions
 - Firewall (single trigger) policy encoding using BDD

$$P_{a} = \bigvee_{i \in index(a)} (\neg C_{1} \land \neg C_{2} \dots \neg C_{i-1} \land C_{i})$$
$$= \bigvee_{i \in index(a)} \bigwedge_{j=1}^{i-1} \neg C_{j} \land C_{i}$$

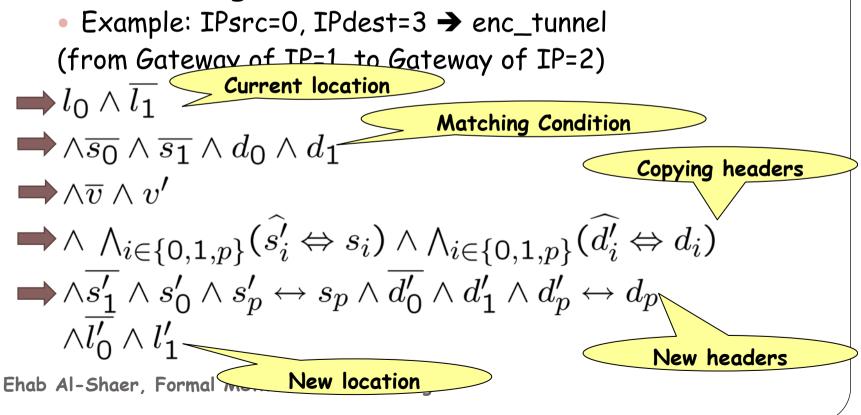
- Transformation:
 - if a pkt state matches the rule condition, the Action can change the packet location and possibly the <u>headers</u> → means change over the bits of the state
- Transition relation is *characterization function* as follows:
 - **t**: (Curr_pkt x Curr_loc)x (New_pkt x New_loc) \rightarrow {true, false}
 - Device Model φ = *loc* ∧ Match_Condition ∧ t → {true, false} Ehab Al-Shaer, Formal Methods in Networking

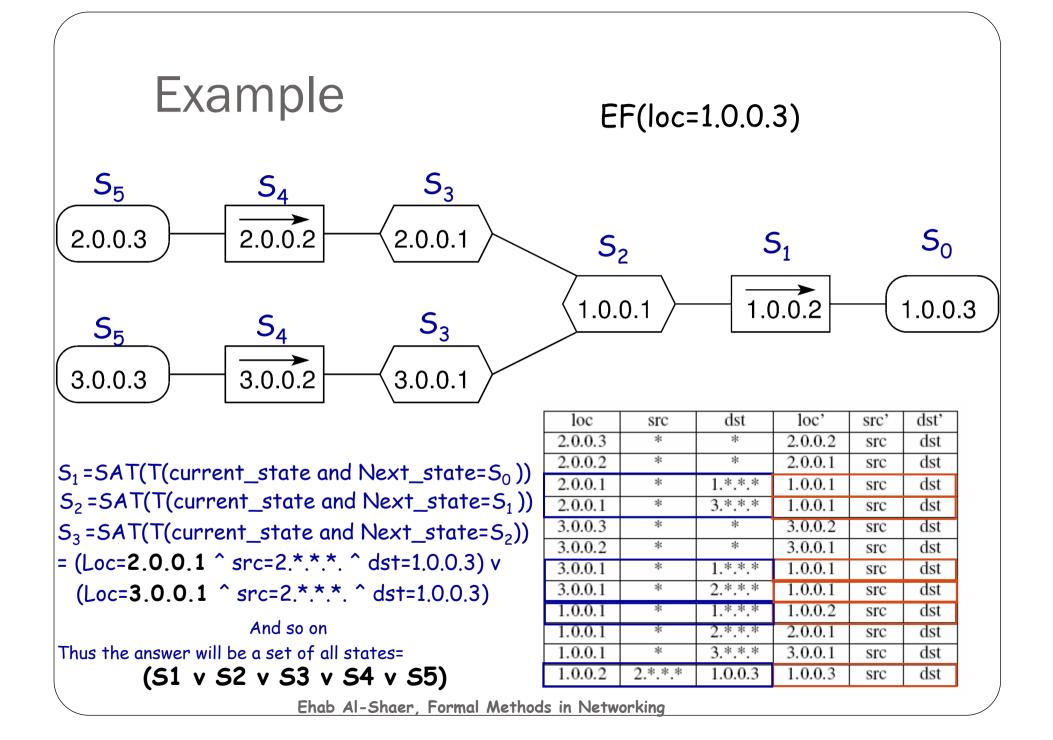

• Global Transitions relation of the entire network:

 $T = \bigvee_{i \in devices} \Phi_{device_i}$

• Variables

91


- Locations is every place that can describe packet position: firewall, router, IPSec device, or application layer service, etc.
- We allow Location to be different than IPsrc for spoofing
- There are two versions of each variable: current and new state.
- Each property and field describing the state (i.e., location IP; packet properties: src/dst IP; port, proto, transformation, etc) is represented by bits, according to its size.
- These variables are used via a symbolic representation using Ordered Binary Decision Diagrams.
- Model Checking and CTL are used to answer the queries posed by the administrator.


- Firewall Modeling (Example) $(s_1 \wedge \overline{s_0}) \vee (d_1 \wedge d_0 \wedge d_p) \wedge$ $\bigwedge_{i \in \{0,1,p\}} (s'_i \Leftrightarrow s_i) \wedge \bigwedge_{i \in \{0,1,p\}} (d'_i \Leftrightarrow d_i) \wedge l'_1 \wedge l'_0 \wedge$ $\overline{l_1} \wedge l_0$
- Router Modeling (Example) $(\overline{d}_1 \wedge \overline{l'_1} \wedge \overline{l'_0}) \vee (d_1 \wedge l'_1 \wedge l'_0) \wedge$ $\wedge_{i \in \{0,1,p\}} (s'_i \Leftrightarrow s_i) \wedge \wedge_{i \in \{0,1,p\}} (d'_i \Leftrightarrow d_i) \wedge l_1 \wedge \overline{l_0}$
- NAT Modeling (Example) $[s_1 \wedge s_0 \wedge s_p \wedge \overline{l'_1} \wedge l'_0 \wedge s'_1 \wedge \overline{s'_0} \wedge \overline{s'_p} \wedge \bigwedge_{i \in \{0,1,p\}} (d'_i \Leftrightarrow \quad \text{outgoing} \\ d_i)] \lor \\ [d_1 \wedge \overline{d_0} \wedge \overline{d_p} \wedge l'_1 \wedge l'_0 \wedge d'_1 \wedge d'_0 \wedge d'_p \wedge \bigwedge_{i \in \{0,1,p\}} (s'_i \Leftrightarrow \quad \text{incoming} \\ s_i)] \wedge l_1 \wedge \overline{l_0}$

Formalization – The Extended Model

- IPSec encapsulation requires new headers and saving the old headers → copier, stack, valid bit
- IPSec Modeling

Example	EF(loc=1.0.0.3)						
2.0.0.3 2.0.0.2 S ₃ 2.0.0.2 2.0.0.1	S	2	S ₁		S ₀		
S ₃ 3.0.0.3 3.0.0.2 3.0.0.1	1.0.	0.1		0.0.2	(_	1.0.0.3	
	loc	src	dst	loc'	src'	dst'	
	2.0.0.3	*	*	2.0.0.2	src	dst	
	2.0.0.2	*	*	2.0.0.1	src	dst	
	2.0.0.1	*	1.*.*.*	1.0.0.1	src	dst	
	2.0.0.1	*	3.*.*.*	1.0.0.1	src	dst	
	3.0.0.3	*	*	3.0.0.2	src	dst	
	3.0.0.2	*	*	3.0.0.1	src	dst	
	3.0.0.1	*	1.*.*.*	1.0.0.1	src	dst	
	3.0.0.1	*	2.*.*.*	1.0.0.1	src	dst	
	1.0.0.1	*	1.*.*.*	1.0.0.2	src	dst	
	1.0.0.1	*	2.*.*.*	2.0.0.1	src	dst	
	1.0.0.1	*	3.*.*.*	3.0.0.1	src	dst	
Ehab Al-Shaer, Formal Methods in Netwo	1.0.0.2	2.*.*.*	1.0.0.3	1.0.0.3	src	dst	
						/	

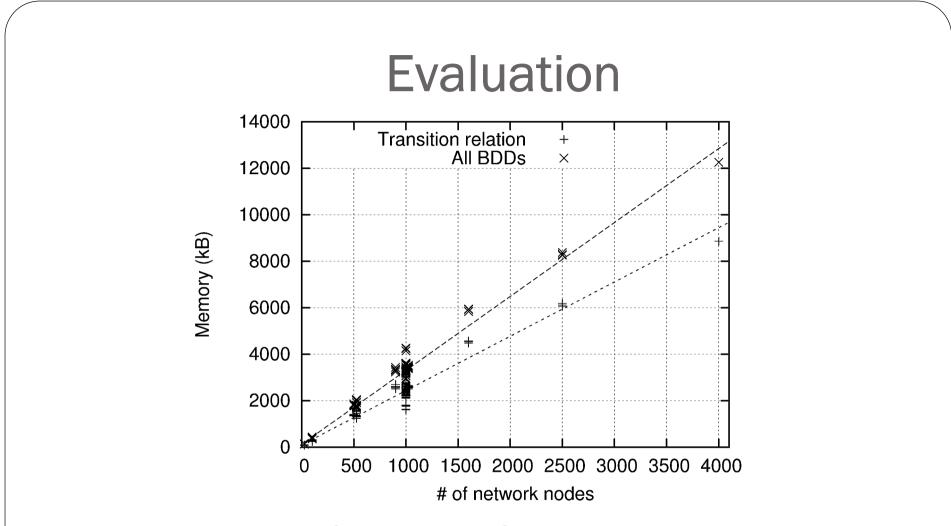
ConfigChecker Box-- Querying the Network

- After loading the configuration files and digesting them into the unified model, CTL- (or LTL) based queries can be issued
- Configuration soundness and completeness (e.g., routing, VPN)
- Any general property-based verification
- Satisfying assignments to the CTL-based queries, are the answer to our queries.

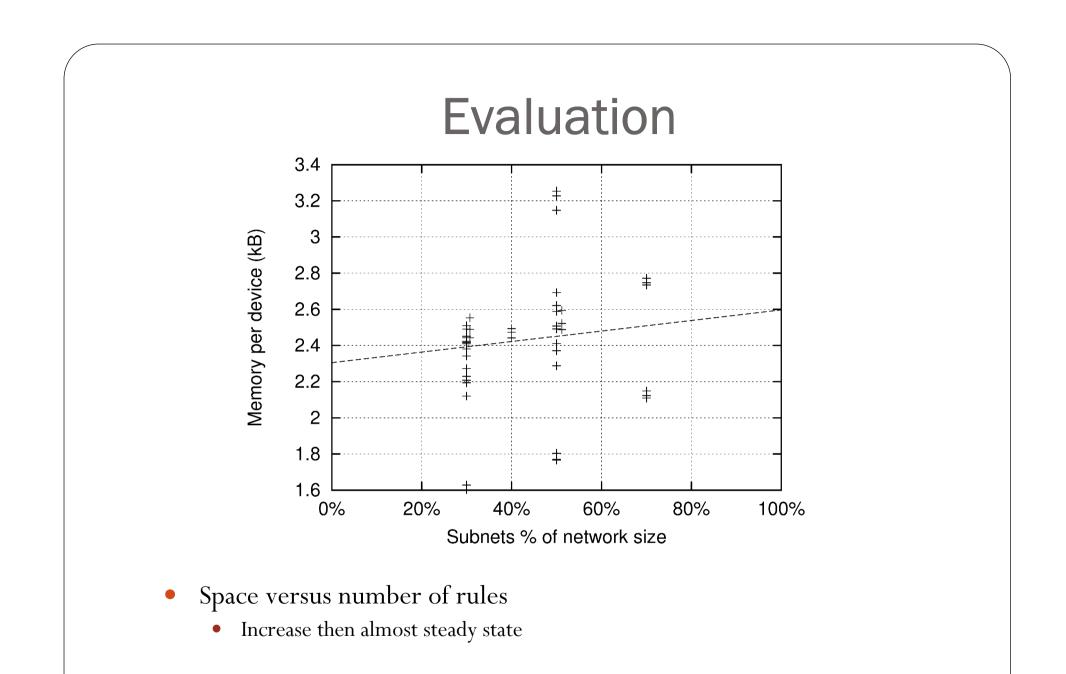
Examples of Configuration Analysis using ConfigChecker Query Interface

Basic reachability	
Q1: $(src = a1 \land dest = a2 \land loc(a1)) \rightarrow \mathbf{AF}(src = a1 \land dest = a2 \land loc(a2))$	
Given a starting location and a flow, do packets of this flow eventually reach the destination	?
Reachability Soundness	
Q2: $[loc(a1) \land src(a1) \land dst(a2) \land \mathbf{EF}(loc(a2))] \rightarrow \mathcal{P}connect(a1, a2)$	
If the src can reach the destination in configuration then it must be allowed in CRP.	
Reachability Completeness	
Q3: $\mathcal{P}connect(a1, a2) \rightarrow [loc(a1) \land src(a1) \land dst(a2) \rightarrow \mathbf{EF}(loc(a2))]$	
if CRP allows a1 to reach a2, then there must a path in the configuration that eventually allo	ws
a1 to reach a2.	
Discovering routing loops	
Q4: $loc(a1) \land \mathbf{EX}(\mathbf{EF}(loc(a1)))$	
Is there a node that can reach a1 and for the same flow it is the next hop of a1?	
Shadow or Bogus routing entries	
Q5: $\mathbf{EX}(true) \land \neg \mathbf{EX}_{(true)} \land (loc(router1) \lor loc(router2))$	
Given all routers, does any have a decision for traffic will never reach it from its previous hop)?
End-to-end integrity of single/nested or cascaded IPSec encrypted tunnel	
$Q6: \langle (src = a1 \land dest = a2 \land loc(a1) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \rangle \rightarrow AU((IPSec(encT) \lor loc \rightarrow \mathcal{G}), loc(a2) \land IPSec(encT) \land IPS$	2))
If the traffic is encrypted in a tunnel from the src then it will appear decrypted only at the destination	ion
or at intermediate authorized gateways (G) that allow for cascaded tunnels. If $\mathcal{G}=false$, then the	ere
are no intermediate gateways and the traffic must travel through a single tunnel.	
Comparing configuration for backdoors or broken flows after route changes	
Q7a: $C_{org} \triangleq [\neg multiroute \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land src = a2 \land src$	2)]
Q7b: $C_{new} \triangleq [multiroute \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land loc(a1) \rightarrow \mathbf{AF}(loc(a2) \land src = a1 \land dest = a2 \land src = a2 \land $	2)]
Q7: Backdoors: $\neg C_{org} \land C_{new}$, Broken flows: $\neg C_{new} \land C_{org}$	
what is different in the new configuration as compared with the ordinary original one. Is there a	iny
backdoor?	-
99	

Implementation


- Model and configurations:
 - Device policies and configurations are loaded and compiled into transitions in the global state machine definition.
 - Currently we support a basic text format for devices. Future formatfilters can be incorporated for commercialization.
- Model Checker:
 - It was built from scratch over the BuDDy package.
 - We have 1182 variables (104 + tunnel variables)
 - BDD Optimization: Interleaving variable ordering (keep correlated variable close)
- CTL-based queries:
 - Parsed by our framework given the format as specified in our technical report.

Hints about "Space Explosion" in Model Checking


- Although CTL is linear in size of the model, the model itself might be exponential with the number of variable/components in the system
- Ways to avoid state explosion
 - Using Efficient data structure like OBDD
 - Abstraction: interpret the model abstractly based on specific property
 - Partial order reduction: running several interleaving of components traces (parallelism or multithreaded)
 - Induction: some component traces can be produced by induction
 - Compositionality: breaking the verification problem into several subproblems that can be logically composed
 Ehab Al-Shaer, Formal Methods in Networking

Evaluation

- Using 90 networks with real and random network configuration
- Random (yet reasonable) configuration is important
- Random Policy/Configuration Generation
 - Hierarchical topology network
 - Evaluation parameters: network size, policy size, rule interaction/overlapping, subnet distribution, branching factor or network depth vs. breadth, device type
 - BDD can handle up to 30K rule per device
 - Created 4000 nodes and 6M rules
 - Details, examples of format, and configurations can be found in http://www.cyberDNA.uncc.edu/projects/ConfigChecker
- We measure the space requirement and building time
 - Query time is negligible in most of the case

- Memory Required versus Network size
 - The growth is evidently linear in both transition relation size and in overall BDD table entry count.

Summary

- BDD Pros and Cons
 - + powerful canonical representation
 - + powerful logical operation: manipulating, testing
 - Each step polynomial complexity
 - + Maintain "closure" property
 - + Compactness (size usually stay small at least for many applications) we used firewall 30K rules for Cisco and 5 millions rules in network testing
 - + Efficient Quantification operations
 - Too big for some problems
 - Weak for search problems
 - Must be careful to choose good variable ordering
 - Must have good insights into problem characteristics

Summary

- ConfigCheacker provides a novel approach for end-to-end black box network security configuration verification and analysis
- It provides a flexible, extensible framework rather than addressing specific misconfiguration problems
- Model checker looks scalable for this application domain
 - 4K nodes and 6+ Millions of rules \rightarrow Max 14M and order of minutes
 - O(V) instead of $O(V^3)$ ignoring the cost of set/bdd operations
 - Wildcard; common prefixes; overlapping rules, and variable ordering
- Supporting rich and logically expressive interfaces such as CTL is powerful and important, although clumsy for regular users

(Selected) References

[BDD] An Introduction to Binary Decision Diagrams, Henrik Reif Anderson, Lecture notes for 49285 advanced algorithms E97, 1997. [CS] Logic in Computer Science Modeling and Reasoning about Systems, Michael Huth and Mark ryan, Cambridge University Press, 2004. [SS] System and Software Verification, B. Berard ate [CA] Computer Aided Verification of Coordinating Processes, Robert Kurshan, 1995 [MC] Model Checking (E. Clark ate) [DP] Decision Procedure- An Algorithmic Point of View, D. Kroening and O. Strichman [ICNP05] Hazem Hamed, Ehab Al-Shaer and Will Marrero, Modeling and Verification of IPSec and VPN Security Policies, IEEE ICNP'2005, November 2005 [ICNP09] Ehab Al-Shaer, Will Marrero, Adel El-Atawy and Khalid Elbadawi, Network Security Configuration in A Box: End-to-End Security Configuration Verification, IEEE International Conference in Network Protocols (ICNP' 09), October 2009 [JSAC05] Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba and Masum Hasan, Conflict Classification and Analysis of Distributed Firewall Policies, IEEE Journal on Selected Areas in Communications, Issue: 10, Volume: 23, Pages: 2069 - 2084, October 2005 [INFOCOM04] Hazem Hamed and Ehab Al-Shaer, Anomaly Discovery in Distributed Firewalls, IEEE INFOCOM'04, March 2004 [JSAC08] Ehab Al-Shaer, Adel El-Atawy and Taghrid Samak, Automated Pseudo-live Testing of **Firewall Configuration Enforcement**, IEEE Journal on Selected Areas in Communications, Issue: 3, Volume: 27, April 2009 [Malik] Robi Malik Slides in Model Checking on SPIN, Waikato Univ, Australia.