
Ehab Al-Shaer
Cyber Defense and Network Assurability (CyberDNA) Center

School of Computing & Informatics
University of North Carolina, Charlotte, NC

April 5,9, 2010

Lecture 17-18:
Network Configuration Verification and Analysis

Using BDDs

Acknowledgment: Will Marrero, Hazem Hamed, Adel El-Atawy, and Taghrid Samak

CS 598D Formal Methods in Networking
Princeton University

Ehab Al-Shaer, Formal Methods in Networking

Lecture 18 (ConfigChecker):

Network Configuration in a Box: BDD-
based Model Checker Approach for

Applications:
Reachability Analysis
Security Verification
Routing Protocols Debugging
QoS Policy Evaluation and Debugging
Quantifying System Reliability/Resiliency

69

Ehab Al-Shaer, Formal Methods in Networking

Limitations and Objectives
Global & Comprehensive Abstraction:

end-to-end verification of network configuration reachability
and security requirements,
Including all network devices such as routers (unicast and
multicast), firewalls, NAT, and IPSec.

Extensibility
Canonical encoding of network access control configuration
representation including forwarding/routing, translation,
transformation and filtering.

Scalability
Implementing a scalable model checker tool that can handle
thousands of devices and millions of configuration rules

Verifiability
Using property-based verification to establish soundness and
completeness of network reachability of security requirements

Ehab Al-Shaer, Formal Methods in Networking

Why Symbolic?

Symbolic Model Checking

Any model checking method that represents state sets
symbolically as opposed to explicitly enumerating states,

usually using OBDDs.

Ehab Al-Shaer, Formal Methods in Networking

Motivation for model checking
Hardware and software become increasing complicated today.
Verification of correctness of them is critical
Deductive verification is widely used by it is time consuming and can
only done by experts
Model checking can be used to verify finite state concurrent
systems. It can be performed automatically.
CTL and OBDD based model checking is very efficient in many
cases and it can cope with the state explosion problem.

Ehab Al-Shaer, Formal Methods in Networking

Modeling systems: Kripke structure
Let AP be a set of atomic propositions, A Kripke structure M over AP is a four tuple

M=(S, S0, R, L) where
S is a finite set of states.

is the set of initial states
is a transition relation that must be total, that is for every state s in

S there is a s’ such that R(s,s’)

is a function that labels each state with the set of atomic
propositions true in the state

SS ⊆0

SSR ×⊆

APSL 2: →

Ehab Al-Shaer, Formal Methods in Networking

Temporal operators and CTL
Temporal logic: describes sequences of transitions between state but time is not
mentioned explicitly, instead, a formula will specify that “eventually” some designated
state is reached or error state is “never” entered.
Computation Tree Logic (CTL) is a branching-time logic, meaning that its model of
time is a tree-like structure in which the future is not determined; there are different
paths in the future, any one of which might be an actual path that is realized.
CTL is a subset of CTL*
The operators in CTL* includes:

Quantifiers over paths
A (φ) All: φ has to hold on all paths starting from the current state.
E (φ) Exist: there exists at least one path starting from the current state where φ holds

Temporal specific quantifiers
X φ Next: φ has to hold at the next state.
G φ Globally: φ has to hold on the entire subsequent path.
F φ Finally: φ eventually has to hold (somewhere on the subsequent path)
Φ U ψ Until: φ has to hold until ψ hold. ψ eventually will be verified
Φ R ψ Release: φ has to hold before ψ ceases to hold.

From [MC]

Ehab Al-Shaer, Formal Methods in Networking

Model Checking Goal
Given:

Kripke-Structure K
CTL Formula ϕ

Goal:

Identify the set of states of K
where ϕ is true.

p
¬ϕ ϕ ∧ ψ …
AX ϕ EX ϕ
AG ϕ EG ϕ
AF p EF ϕ

A(ϕ U ψ)
E(ϕ U ψ)

Ehab Al-Shaer, Formal Methods in Networking

Calculating State Sets

State sets of a Kripke-structure can be represented
as an OBDD!

¬ ∧ ∨ → ↔

Propositional connectives can be evaluated using OBDD
algorithms.

What about temporal connectives?

Ehab Al-Shaer, Formal Methods in Networking

Representing Transitions

Current State Next State

b h t1 t2 b′ h′ t′1 t′2
0 0 0 0 0 3 1 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 1 0 4 1 0 1 0
2 0 0 1 1 1 0 0 1 0
2 0 0 1 1 5 1 0 1 1
3 1 0 0 0 6 1 1 0 0
4 1 0 1 0 3 1 0 0 0
5 1 0 1 1 4 1 0 1 0

… …

Primed variables
for next state

41 b, t1t1
¬b ∧ ¬h ∧ t1 ∧ ¬t2

∧
b′ ∧ ¬h′ ∧ t′1 ∧ ¬t′2

b ∧ ¬h ∧ ¬t1 ∧ ¬t2
∧

b′ ∧ h′ ∧ ¬t′1 ∧ ¬t′2

41 b, t1t1

63 b, hb

Ehab Al-Shaer, Formal Methods in Networking

A Simple Example

¬b b

T = (¬b ∧ b′) ∨ (b ∧ ¬b′) ∨ (b ∧ b′)
= (¬b ∧ b′) ∨ b

Calculating EX
EX ¬b = ∃b′ (T ∧ ¬b′)

Ehab Al-Shaer, Formal Methods in Networking

Basic CTL operations
AX and EX
AF and EF
AG and EG
AU and EU
AR and ER

Each of the ten operators can be expressed in terms of three operators EX, EG, and
EU(� means logical and)
AX f ≡ ┐EX(┐f)
EF f ≡ E [True U f]
AG f ≡ ┐EF(┐f)
AF f ≡ ┐EG(┐f)
A[f U g] ≡ ┐E[┐g U (┐f �┐g)] � ┐EG ┐g
A [f R g] ≡ ┐E[┐f U ┐g]
E [f R g] ≡ ┐A[┐f U ┐g]

Ehab Al-Shaer, Formal Methods in Networking

Some examples
EF(Start and ┐Ready) : It is possible to get a state where
Start holds but Ready does not hold
AG(Req → AF Ack): If a request occurs, then it will be
eventually acknowledged
AG(AF DeviceEnabled): The proposition DeviceEnabled
holds infinitely often on every computation path
AG(EF Restart): From any state it is possible to get to the
Restart state

Ehab Al-Shaer, Formal Methods in Networking

Examples in Networks

A state satisfies EX(loc=10.10.10.10) if there is a next state in which
the packet in location with address 10.10.10.10
A state satisfies AX(loc=10.10.10.10) if in all next states, the packet
is at location 10.10.10.10
A state satisfies EF(loc=10.10.10.10) if there is a path from this state
along which eventually the location of the packet is 10.10.10.10
A state satisfies AF(loc=10.10.10.10) if along all paths from this
state, eventually the packet will be in 10.10.10.10

Ehab Al-Shaer, Formal Methods in Networking

ConfigChecker

Network Device Configuration (Files)

Admin
Interface

User
Interface

Co
nf

ig
Ch

ec
ke

r

Logic Interface (LTL, CTL, FOL)

Temporal Logic Evaluating Engine

Network State Abstraction

BDD-based Device Configuration
Abstraction

Ehab Al-Shaer, Formal Methods in Networking

Formalization – The Basic Model
The network is modeled as a state machine

each state determined by the packet header information and
packet location on the network

States = Locations X Packets
The characterization function to encode the state of the
network in the basic model (abstracting payload)

Ehab Al-Shaer, Formal Methods in Networking

Formalization – The Basic Model
Network devices are modeled based on the packet matching semantic
and packet transformation

Each rule consists of a condition (Ci) and an action (a): Ci a
Policy are set of rules matched sequentially with single- or multi-
trigger actions
Firewall (single trigger) policy encoding using BDD

Transformation:
if a pkt state matches the rule condition, the Action can change the
packet location and possibly the headers means change over the
bits of the state

Transition relation is characterization function as follows:
t: (Curr_pkt x Curr_loc)x (New_pkt x New_loc) {true, false}
Device Model φ = loc ∧ Match_Condition ∧ t {true, false}

Ehab Al-Shaer, Formal Methods in Networking 91

Formalization – The Basic Model

Global Transitions relation of the entire network:

Variables
Locations is every place that can describe packet position:
firewall, router, IPSec device, or application layer service, etc.
We allow Location to be different than IPsrc for spoofing
There are two versions of each variable: current and new
state.

Each property and field describing the state (i.e., location IP;
packet properties: src/dst IP; port, proto, transformation, etc) is
represented by bits, according to its size.
These variables are used via a symbolic representation using
Ordered Binary Decision Diagrams.
Model Checking and CTL are used to answer the queries posed by
the administrator.

Ehab Al-Shaer, Formal Methods in Networking

Firewall Modeling (Example)

Router Modeling (Example)

NAT Modeling (Example)

Formalization – The Basic ModelFW-IP=1, next-hop-IP=3
IPsrc=2, IPdest=* allow

IPsrc=*, IPdest=3, Pdest=1 allow

IP(NAT)= 2 connected to IP= 1
IPsrc=3/sport=1, IPdes=1
IPsrc=2/sport=0, IPdes=1

Router-IP=2
IPdest=0 nexthop=0
IPdest=1 nexthop=0

(default-gateway) nexthop = 3

outgoing

incoming

Ehab Al-Shaer, Formal Methods in Networking

Firewall Modeling (Example)

Router Modeling (Example)

NAT Modeling (Example)

Formalization – The Basic Model

outgoing

incoming

Ehab Al-Shaer, Formal Methods in Networking

Formalization – The Extended Model

IPSec encapsulation requires new headers and
saving the old headers copier, stack, valid bit
IPSec Modeling

Example: IPsrc=0, IPdest=3 enc_tunnel
(from Gateway of IP=1, to Gateway of IP=2)

Current location

Copying headers

New headers
New location

Matching Condition

Ehab Al-Shaer, Formal Methods in Networking

Example EF(loc=1.0.0.3)

S0S1S2

S3

S3

Ehab Al-Shaer, Formal Methods in Networking

Example EF(loc=1.0.0.3)

S0

S1 =SAT(T(current_state and Next_state=S0))

S1S2

S3

S3

S2 =SAT(T(current_state and Next_state=S1))
S3 =SAT(T(current_state and Next_state=S2))
= (Loc=2.0.0.1 ^ src=2.*.*.*. ^ dst=1.0.0.3) v

(Loc=3.0.0.1 ^ src=2.*.*.*. ^ dst=1.0.0.3)
And so on

Thus the answer will be a set of all states=
(S1 v S2 v S3 v S4 v S5)

S4

S4

S5

S5

Ehab Al-Shaer, Formal Methods in Networking

ConfigChecker Box-- Querying the
Network

After loading the configuration files and digesting them
into the unified model, CTL- (or LTL) based queries can
be issued
Configuration soundness and completeness (e.g., routing,
VPN)
Any general property-based verification
Satisfying assignments to the CTL-based queries, are the
answer to our queries.

Ehab Al-Shaer, Formal Methods in Networking 99

Examples of Configuration Analysis using
ConfigChecker Query Interface

Ehab Al-Shaer, Formal Methods in Networking

Model and configurations:
Device policies and configurations are loaded and compiled into
transitions in the global state machine definition.
Currently we support a basic text format for devices. Future format-
filters can be incorporated for commercialization.

Model Checker:
It was built from scratch over the BuDDy package.
We have 1182 variables (104 + tunnel variables)
BDD Optimization: Interleaving variable ordering (keep correlated
variable close)

CTL-based queries:
Parsed by our framework given the format as specified in our technical report.

Implementation

Ehab Al-Shaer, Formal Methods in Networking

Although CTL is linear in size of the model, the model itself
might be exponential with the number of
variable/components in the system

Ways to avoid state explosion
Using Efficient data structure like OBDD
Abstraction: interpret the model abstractly based on specific
property
Partial order reduction: running several interleaving of
components traces (parallelism or multithreaded)
Induction: some component traces can be produced by
induction
Compositionality: breaking the verification problem into
several subproblmes that can be logically composed

Hints about “Space Explosion”
in Model Checking

Ehab Al-Shaer, Formal Methods in Networking

Using 90 networks with real and random network configuration

Random (yet reasonable) configuration is important

Random Policy/Configuration Generation
Hierarchical topology network

Evaluation parameters: network size, policy size, rule interaction/overlapping,
subnet distribution, branching factor or network depth vs. breadth, device type

BDD can handle up to 30K rule per device

Created 4000 nodes and 6M rules

Details, examples of format, and configurations can be found in
http://www.cyberDNA.uncc.edu/projects/ConfigChecker

We measure the space requirement and building time
Query time is negligible in most of the case

Evaluation

Ehab Al-Shaer, Formal Methods in Networking

Evaluation

Memory Required versus Network size
The growth is evidently linear in both transition relation size and in overall
BDD table entry count.

Ehab Al-Shaer, Formal Methods in Networking

Evaluation

Space versus number of rules
Increase then almost steady state

Ehab Al-Shaer, Formal Methods in Networking

Summary
BDD Pros and Cons

+ powerful canonical representation
+ powerful logical operation: manipulating, testing

- Each step polynomial complexity
+ Maintain “closure” property
+ Compactness (size usually stay small at least for many applications)

we used firewall 30K rules for Cisco and 5 millions rules in network
testing

+ Efficient Quantification operations
- Too big for some problems
- Weak for search problems
- Must be careful to choose good variable ordering
- Must have good insights into problem characteristics

Ehab Al-Shaer, Formal Methods in Networking

Summary

ConfigCheacker provides a novel approach for end-to-end black box
network security configuration verification and analysis

It provides a flexible, extensible framework rather than addressing
specific misconfiguration problems

Model checker looks scalable for this application domain
4K nodes and 6+ Millions of rules Max 14M and order of minutes
O(V) instead of O(V3) – ignoring the cost of set/bdd operations
Wildcard; common prefixes; overlapping rules, and variable ordering

Supporting rich and logically expressive interfaces such as CTL is
powerful and important, although clumsy for regular users

Ehab Al-Shaer, Formal Methods in Networking

125

[BDD] An Introduction to Binary Decision Diagrams, Henrik Reif Anderson, Lecture notes for
49285 advanced algorithms E97, 1997.
[CS] Logic in Computer Science Modeling and Reasoning about Systems, Michael Huth and
Mark ryan, Cambridge University Press, 2004.
[SS] System and Software Verification, B. Berard ate
[CA] Computer Aided Verification of Coordinating Processes, Robert Kurshan, 1995
[MC] Model Checking (E. Clark ate)
[DP] Decision Procedure– An Algorithmic Point of View, D. Kroening and O. Strichman
[ICNP05] Hazem Hamed, Ehab Al-Shaer and Will Marrero, Modeling and Verification of IPSec
and VPN Security Policies, IEEE ICNP'2005, November 2005
[ICNP09] Ehab Al-Shaer, Will Marrero, Adel El-Atawy and Khalid Elbadawi, Network Security
Configuration in A Box: End-to-End Security Configuration Verification, IEEE International
Conference in Network Protocols (ICNP’ 09), October 2009
[JSAC05] Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba and Masum Hasan, Conflict
Classification and Analysis of Distributed Firewall Policies, IEEE Journal on Selected Areas in
Communications, Issue: 10, Volume: 23, Pages: 2069 - 2084, October 2005
[INFOCOM04] Hazem Hamed and Ehab Al-Shaer, Anomaly Discovery in Distributed Firewalls,
IEEE INFOCOM'04, March 2004
[JSAC08] Ehab Al-Shaer, Adel El-Atawy and Taghrid Samak, Automated Pseudo-live Testing of
Firewall Configuration Enforcement, IEEE Journal on Selected Areas in Communications, Issue:
3, Volume: 27 , April 2009
[Malik] Robi Malik Slides in Model Checking on SPIN, Waikato Univ, Australia.

(Selected) References

