
A

A
A

A

A

A
A

A A

A A

A

FORMAL METHODS IN NETWORKING

COMPUTER SCIENCE 598D, SPRING 2010

PRINCETON UNIVERSITY

LIGHTWEIGHT MODELING

IN PROMELA/SPIN AND ALLOY

Pamela Zave

AT&T Laboratories—Research

Florham Park, New Jersey, USA

A

A
A

A

A

A
A

A A

A A

A

THE PRESS RELEASE

"Three features that distinguish Chord from many
peer-to-peer lookup protocols are its simplicity,
provable correctness, and provable performance."

THE (NEWLY DISCOVERED) REALITY

the only "proof" covers the join-and-
stabilize case only, with no failures

this "proof" is an informal construction of
ill-defined terms, unstated assumptions,
and unjustified or incomprehensible steps

the full protocol is incorrect, even after
bugs with straightforward fixes are
eliminated

not one of the six properties claimed
invariant for the full protocol is invariantly
true

some of the many papers analyzing Chord
performance are based on false
assumptions about how the protocol works

however, the subset can
be proven correct, formally USE

LIGHTWEIGHT MODELING

and avoid embarrassment!

A

A
A

A

A

A
A

A A

A A

A

THE FAIL EVENT

9

16

22

35

succ2

THE RECONCILIATION OPERATION

BEFOREBEFORE

9

16

35

AFTER
AFTER

9

16

35

9

16

35

flush:
remove
dead
predecessor

update: replace dead
successor by live succ2

reconcile: improve
succ2 by replacing
with successor's
successor

failing

A

A
A

A

A

A
A

A A

A A

A

ANTECEDENT PREDECESSORS

pred AntecedentPredecessors [t: Time] {
 all n: Node | let antes = (succ.t).n |
 n.prdc.t in antes
}

at time t, the set of all nodes
whose successor is n

WHERE DID IT COME FROM?

must be an invariant to prove
that the pure-join model is
correct

WAS IT PREVIOUSLY KNOWN?

no, supporting my allegation
that the previous "proof" is
useless

IS IT GOOD FOR ANYTHING
ELSE?

yes, it enables us to diagnose
and fix a Chord bug

6

10

12

6

10

12
6

10

12

10
fails,
AP is

violated

6
stabilizes,
the cycle

is lost

this can be prevented
by an extra check in
the stabilize event

A

A
A

A

A

A
A

A A

A A

A

PROPERTIES CLAIMED INVARIANT

FOR THE FULL MODEL

61

9

15

21

3035

39

48

46

7

2
after untangling bad definitions
and formalizing, we get 5
properties

OneOrderedCycle

ConnectedAppendages

OrderedAppendages

OrderedMerges

ValidSuccessorList
(will be explained)

NOT ONE of these properties
is actually an invariant!

A

A
A

A

A

A
A

A A

A A

A

ORDERED MERGES

12

6

10

16

6

10

1216

6

10

1216

12 stabilizes
and

notifies 16

6 stabilizes
and

notifies 12

The good news:
Violations are repaired by
stabilization.

The bad news:
Compromises some lookups.
Invalidates some assumptions
used in performance analysis.

pred OrderedMerges [t: Time] {
 let cycleMembers =
 { n: Node | n in n.(^(bestSucc.t)) } |
 all disj n1, n2, n3: Node |
 (n3 in n1.bestSucc.t
 && n3 in n2.bestSucc.t
 && n1 in cycleMembers
 && n2 !in cycleMembers
 && n3 in cycleMembers
) => Between[n1,n2,n3]
}

easily violated,
even in the
pure-join model

best live
successor

A

A
A

A

A

A
A

A A

A A

A

ORDERED APPENDAGES

pred OrderedAppendages [t: Time] {
 let members = { n: Node | Member[n,t] } |
 let cycleMembers = { n: members | n in n.(^(bestSucc.t)) } |
 let appendSucc = bestSucc.t - (cycleMembers -> Node) |
 all n: cycleMembers |
 all disj a1, a2, a3: (members - cycleMembers) + n |
 (n in a1.(^appendSucc)
 && a2 = a1.appendSucc
 && (a1 in a3.(^appendSucc) || a3 in a2.(^appendSucc))
) => ! Between[a1,a3,a2]
}

WHY A POWERFUL ASSERTION LANGUAGE IS NEEDED

12
18

15

17

19

13

25

27

the successor
relation on
appendages only

a1, a2, a3 have to be
confined to the appendage
tree rooted at n

a1

a2
n

a3 can be 13

a3 cannot be 18

A

A
A

A

A

A
A

A A

A A

A

"if a node x's successors skip over a live
node y, then y is not in the successor
list of any x antecedent"

17

20

25

13

9

x

y
20

25

13

9

17 fails,
13

updates

20 was part of the cycle,
is now an appendage

17

20

25

13

9

17

25

13

9

VALID SUCCESSOR LIST

9
stabilizes

20 joins,
17 stabilizes,
9 reconciles

how it can be violated why it
matters

A

A
A

A

A

A
A

A A

A A

A

WHY THE FULL PROTOCOL IS NOT CORRECT

DESIRED THEOREM: In any reachable state, if there are no subsequent joins or
failures, then eventually the network will become ideal and
remain ideal.

0

1840

0

1840

49 5

21

0

18 40

3 nodes
join and
become

integrated

new nodes
fail, old
nodes
update

this ring is ideal

this ring is
disordered, so

the protocol
cannot fix it

this is actually a class of counterexamples:

any ring of odd size becomes disordered

any ring of even size splits into two disconnected
subnetworks (which the protocol cannot fix)

A

A
A

A

A

A
A

A A

A A

A

COMPARISON, REVISITED

PROMELA/SPIN ALLOY

state
structure

primitive in Promela;
displayed poorly by Spin

Alloy language is rich and
expressive; many display options

invariants except for the most basic
ones, an invariant must be
written as a C program

Alloy language is rich,
expressive, and concise

these are not superficial
properties—they cannot

be slapped on top of Spin
like frosting on a cake

sometimes searching for
the right invariant requires

a great deal of trial and
error—this is why C

programs don't make
good invariants

