
SAT Solvers:
A Condensed History

Sharad Malik
Princeton University

COS 598d
3/1/2010

Wh t d ?Where are we today?
Intractability of the problem no longer dauntingIntractability of the problem no longer daunting

Can regularly handle practical instances with millions of variables and
constraints

SAT has matured from theoretical interest to practical impactSAT has matured from theoretical interest to practical impact
Electronic Design Automation (EDA)

Widely used in many aspects of chip design
Automated logic design, verification
Used by every EDA vendor

Cadence, Synopsys, Mentor Graphics…
Used in in-house tools at leading semiconductor vendors

Intel, IBM, …Intel, IBM, …

Increasing use in software verification
Reported commercial use at Microsoft, NEC,…

Wh t d (td)Where are we today (contd.)
Significant SAT communitySignificant SAT community

SatLive and SAT competitions
SAT Conference

Emboldened researchers to take on even harder
problems

Satisfiability Modulo Theories (SMT)Satisfiability Modulo Theories (SMT)
Max-SAT
Quantified Boolean Formulas (QBF)

SAT Solvers:
A C d d Hi tA Condensed History

DeductiveDeductive
Davis-Putnam 1960 [DP]
Iterative existential quantification by “resolution”

Backtrack SearchBacktrack Search
Davis, Logemann and Loveland 1962 [DLL]
Exhaustive search for satisfying assignment

C fli t D i Cl L i [CDCL]Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards
Added focus on efficient implementation

Boolean Constraint Propagation Decision HeuristicsBoolean Constraint Propagation, Decision Heuristics, …

P bl R t tiProblem Representation

Conjunctive Normal FormConjunctive Normal Form
Representation of choice for modern SAT solvers

(a+b+c)(a’+b’+c)(a’+b+c’)(a+b’+c’)

Variables ClausesLiterals

Ci it t CNF C i
Tseitin Transformation

Circuit to CNF Conversion

(a + b + d’)
d ≡ (a + b)

(c’ + d’ + e)
e ≡ (c ⋅ d)

a
d

(a b d)
(a’ + d)
(b’ + d)

(d + e’)
(c + e’)

Consistency conditions
for circuit variables

b
d

e

c

Can ‘e’ ever become true?
Is (e)(a + b + d’)(a’+d)(b’+d)(c’+d+e)(d+e’)(c+e’) satisfiable?()()()()()()()

R l tiResolution
Resolution of a pair of distance-one clausesResolution of a pair of distance one clauses

(+ b + ’ + f) (+ h’ + + f)(a + b + c’ + f) (g + h’ + c + f)

a + b + g + h’ + fa + b + g + h’g

Resolvent implied by the original clauses

D i P t Al ithDavis Putnam Algorithm
M .Davis, H. Putnam, “A computing procedure for quantification theory", J. of , , p g p q y ,
ACM, Vol. 7, pp. 201-214, 1960
Iterative existential quantification of variables

(a + b) (a + b’) (a’ + c)(a’ + c’)(a + b + c)(b + c’ + f’)(b’ + e)f f

(a + c + e)(c’ + e + f) (a’ + c)(a’ + c’)(a)∃b, f ∃b, f

(a + e + f) (c)(c’)

()SAT

∃{b,c}, f
∃{b,a}, f

∃{b,a,c}, f()SAT
UNSAT

Potential memory explosion problem!

SAT Solvers:
A C d d Hi tA Condensed History

DeductiveDeductive
Davis-Putnam 1960 [DP]
Iterative existential quantification by “resolution”

Backtrack SearchBacktrack Search
Davis, Logemann and Loveland 1962 [DLL]
Exhaustive search for satisfying assignment

C fli t D i Cl L i [CDCL]Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards
Added focus on efficient implementation

Boolean Constraint Propagation Decision HeuristicsBoolean Constraint Propagation, Decision Heuristics, …

B i DLL S hBasic DLL Search

(a + c + d)
(a + c + d’)
()

(a’ + b + c)

(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)(a’ + b + c’)
(a’ + b’ + c)

B i DLL S hBasic DLL Search
a

(a + c + d)
(a + c + d’)
()

(a’ + b + c)
a

(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)(a’ + b + c’)
(a’ + b’ + c)

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)
⇐ Decision

→

(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)→ (a’ + b + c’)
(a’ + b’ + c)

→
→

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0 ⇐ Decision

→
(a’ + b + c’)
(a’ + b’ + c)

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c

→
→

(a’ + b + c’)
(a’ + b’ + c)

0 ⇐ Decision

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b
⇐ Unit→

→
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c d=1
(a’ + b + c’)
(a’ + b’ + c)

0

Unit Clause Rule

d=1
(a + c + d)

a=0

Implication Graph
c=0

p p

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b⇐ Unit
→
→

(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c d=1,d=0
(a’ + b + c’)
(a’ + b’ + c)

0

d=1
(a + c + d)

a=0

Implication Graph
c=0 d=0

(a + c + d’)

p p

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b
→
→

(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c d=1,d=0
(a’ + b + c’)
(a’ + b’ + c)

0

d=1
(a + c + d)

a=0
Conflict!Implication Graph

c=0 d=0
(a + c + d’)

p p

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b
→
→

(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c ⇐ Backtrack

→
→

(a’ + b + c’)
(a’ + b’ + c)

0

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c
F d D i i

→
→

(a’ + b + c’)
(a’ + b’ + c)

0 1 ⇐ Forced Decision

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c
F d D i i

→
→

d=1,d=0
(a’ + b + c’)
(a’ + b’ + c)

0 1 ⇐ Forced Decision

d=1
(a + c’ + d)

a=0
Conflict!Implication Graph

c=1 d=0
(a + c’ + d’)

p p

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b
→
→

(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c ⇐ Backtrack

→
→
→

(a’ + b + c’)
(a’ + b’ + c)

0 1

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b ⇐ Backtrack
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c
(a’ + b + c’)
(a’ + b’ + c)

0 1

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c

1 ⇐ Forced Decision

(a’ + b + c’)
(a’ + b’ + c)

0 1

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b
→
→

(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c c

1→
→
→ d=1,d=0

(a’ + b + c’)
(a’ + b’ + c)

0 1 0 ⇐ Decision

d=1
(a + c’ + d)

a=0
Conflict!Implication Graph

c=0 d=0
(a + c’ + d’)

p p

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b
→
→

(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c c

1

⇐ Backtrack

→
→
→

(a’ + b + c’)
(a’ + b’ + c)

0 1 0

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c c

1→
→
→ d=1,d=0

(a’ + b + c’)
(a’ + b’ + c)

0 1 0 1 ⇐ Forced Decision

d=1
(a + c’ + d)

a=0
Conflict!Implication Graph

c=1 d=0
(a + c’ + d’)

p p

B i DLL S hBasic DLL Search
a ⇐ Backtracka

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b

→
→
→

(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c c

1→
→
→
→ (a’ + b + c’)

(a’ + b’ + c)
0 1 0 1→

→

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b

1 ⇐ Forced Decision→
→

(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c c

1→
→

(a’ + b + c’)
(a’ + b’ + c)

0 1 0 1

B i DLL S hBasic DLL Search
aa

0
(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b

1

b

→

c=1
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c c

1 1 ⇐ Decision

→
(a’ + b’ + c)
(a’ + b + c’) 0 1 0 1→

→

a=1 c=1
(a’ + b’ + c)

Implication Graph
b=1

p p

B i DLL S hBasic DLL Search
aa

(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b

1

b

0

c=1,d=1
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c c

1 1

→

(a’ + b’ + c)
(a’ + b + c’) 0 1 0 1

a=1 c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

Implication Graph
b=1

p p

B i DLL S hBasic DLL Search
aa

(a + c + d)
(a + c + d’)
()

(a’ + b + c)

b

1

b

0

c=1,d=1
(a + c’ + d)
(a + c’ + d’)
(b’ + c’ + d)
(a’ + b + c’)

0

c c

1 1

⇐ SAT→
(a’ + b + c’)
(a’ + b’ + c)

0 1 0 1

a=1 c=1
(a’ + b’ + c) (b’ + c’ + d)

d=1

Implication Graph
b=1

p p

SAT Solvers:
A C d d Hi tA Condensed History

DeductiveDeductive
Davis-Putnam 1960 [DP]
Iterative existential quantification by “resolution”

Backtracking SearchBacktracking Search
Davis, Logemann and Loveland 1962 [DLL]
Exhaustive search for satisfying assignment

C fli t D i Cl L i [CDCL]Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards
Added focus on efficient implementation

Boolean Constraint Propagation Decision HeuristicsBoolean Constraint Propagation, Decision Heuristics, …

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4 x1 x1=0
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1=0

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x4=1

x1=0

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x4=1

x3=1x1=0

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x4=1

x3=1

x8=0

x1=0

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x4=1

x3=1

x8=0

x1=0

x12=1

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0

x4=1

x3=1

x8=0

x1=0

x12=1
x2=0

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0, x11=1

x4=1

x3=1

x8=0

x1=0

11 1
x12=1

x2=0

x11=1

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0, x11=1

x7 x7=1x4=1

x3=1 x7=1

x8=0

x1=0

11 1
x12=1

x2=0

x11=1

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0, x11=1

x7 x7=1, x9= 0, 1x4=1
x9=1

x9=0
x3=1 x7=1

x8=0

x1=0

11 1
x12=1

x2=0

x11=1

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0, x11=1

x7 x7=1, x9=1x4=1
x9=1

x3=1∧x7=1∧x8=0 → conflict

x9=0
x3=1 x7=1

x8=0

x1=0

11 1 x3 1∧x7 1∧x8 0 → conflict
x12=1

x2=0

x11=1

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0, x11=1

x7 x7=1, x9=1x4=1
x9=1

x9=0
x3=1 x7=1

x8=0

x1=0

11 1 x3=1∧x7=1∧x8=0 → conflict

Add conflict clause: x3’+x7’+x8
x12=1

x2=0

x11=1 x3 1∧x7 1∧x8 0 → conflict

Conflict Driven Learning and
N h l i l B kt ki
x1 + x4

Non-chronological Backtracking
x1 x1=0, x4=1

x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0, x11=1

x3’+x7’+x8

x7 x7=1, x9=1x4=1
x9=1

x9=0
x3=1 x7=1

x8=0

x1=0

11 1 x3=1∧x7=1∧x8=0 → conflict
x12=1

x2=0

x11=1

Add conflict clause: x3’+x7’+x8

x3 1∧x7 1∧x8 0 → conflict

Conflict Driven Learning and
N h l i l B kt ki
x1 + x4

Non-chronological Backtracking
x1 x1=0, x4=1

x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9

x3 x3=1, x8=0, x12=1
x7 + x3 + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x2 x2=0, x11=1

x3’+x7’+x8

x7 x7=1, x9=1x4=1
x9=1

x9=0
x3=1 x7=1

x8=0

x1=0

11 1
Backtrack to the decision level of x3=1x12=1

x2=0

x11=1

Conflict Driven Learning and
N h l i l B kt kiNon-chronological Backtracking
x1 + x4 x1 x1=0, x4=1
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9 x3 x3=1, x8=0, x12=1,x7=0

x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
x3’ + x7’ + x8 ←new clause

x4=1
x7=0

x3=1

x8=0

x1=0

Backtrack to the decision level of x3=1
Assign x7 = 0

x12=1

Wh t’ th bi d l?What’s the big deal?
x1

Conflict clause: x1’+x3+x5’

Significantly prune the search space –

x1

x2

learned clause is useful forever!

Useful in generating future conflict

x3x3

4 4 clauses.x4 x4

x5x5x5 x5

R t tRestart
Abandon the x

1current search
tree and
reconstruct a
new one

x
2

1 x
2

x
3new one

The clauses
learned prior to
the restart are x

x
3

x

x
3 x

1

3

the restart are
still there after
the restart and
can help pruning
the search space

44

x
5

x
5

x
5

x
5

x
5

the search space
Adds to
robustness in the
solversolver

Conflict clause: x1’+x3+x5’

SAT Solvers:
A C d d Hi tA Condensed History

DeductiveDeductive
Davis-Putnam 1960 [DP]
Iterative existential quantification by “resolution”

Backtracking SearchBacktracking Search
Davis, Logemann and Loveland 1962 [DLL]
Exhaustive search for satisfying assignment

C fli t D i Cl L i [CDCL]Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT
and others, 2001 onwards
Added focus on efficient implementation

Boolean Constraint Propagation Decision HeuristicsBoolean Constraint Propagation, Decision Heuristics, …

S ith Ch ff (2000)Success with Chaff (2000)
First major instance: ToughFirst major instance: Tough
Industrial Processor Verification

Bounded Model Checking, 14 cycle behavior

Statistics
1 million variables
10 million literals initially10 million literals initially

200 million literals including added clauses
30 million literals finally

4 illi l (i iti ll)4 million clauses (initially)
200K clauses added

1.5 million decisions
3 hour run time

[MMZ+01]

Constants Matter
Motivating Metrics: Decisions, Instructions, Cache
Performance and Run Time

1dlx_c_mc_ex_bp_f
Num Variables 776
Num Clauses 3725
Num Literals 10045

zChaff SATO GRASP
Decisions 3166 3771 1795

Instructions 86.6M 630.4M 1415.9M

L1/L2 24M / 1 7M 188M / 79M 416M / 153M# L1/L2
accesses

24M / 1.7M 188M / 79M 416M / 153M

% L1/L2
i

4.8% / 4.6% 36.8% / 9.7% 32.9% / 50.3%
misses
Seconds 0.22 4.41 11.78

Chaff Contribution 1:
2 Lit l W t hi2 Literal Watching

N-literal clause can be unit or conflicting only after N-1 of the literalsN literal clause can be unit or conflicting only after N 1 of the literals
have been assigned to F

(v1 + v2 + v3): implied cases: (0 + 0 + v3) or (0 + v2 + 0) or (v1 + 0 + 0)
So (theoretically) we could completely ignore the first N-2So, (theoretically) we could completely ignore the first N-2
assignments to this clause
In reality, we pick two literals in each clause to “watch” and thus can
ignore any assignments to the other literals in the clauseignore any assignments to the other literals in the clause.

Example: (v1 + v2 + v3 + v4 + v5)
(v1=X + v2=X + v3=? {i.e. X or 0 or 1} + v4=? + v5=?)

If a clause can become newly implied via any sequence ofIf a clause can become newly implied via any sequence of
assignments, then this sequence will include an assignment of one
of the watched literals to F

Decision Heuristics –
C ti l Wi dConventional Wisdom

“Assign most tightly constrained variable” : e g DLISAssign most tightly constrained variable : e.g. DLIS
(Dynamic Largest Individual Sum)

Simple and intuitive: At each decision simply choose the
assignment that satisfies the most unsatisfied clauses.assignment that satisfies the most unsatisfied clauses.
Expensive book-keeping operations required

Must touch *every* clause that contains a literal that has been set to
true. Often restricted to initial (not learned) clauses.
Need to reverse the process for un-assignment.

Look ahead algorithms even more compute intensive
C. Li, Anbulagan, “Look-ahead versus look-back for satisfiability

bl ” P f CP 1997problems” Proc. of CP, 1997.
Take a more “global” view of the problem

Chaff Contribution 2:
Modern Decision Heuristics –
Variable Activity Based

VSIDS: Variable State Independent Decaying SumVSIDS: Variable State Independent Decaying Sum
Rank variables by literal count in the initial clause database
Only increment counts as new (learnt) clauses are added
Periodically, divide all counts by a constant

Quasi-static:
Static because it doesn’t depend on variable stateStatic because it doesn t depend on variable state
Not static because it gradually changes as new clauses are
added

Decay causes bias toward *recent* conflictsDecay causes bias toward *recent* conflicts.
Has a beneficial interaction with 2-literal watching

Activity Based Heuristics
d L lit B d S hand Locality Based Search

By focusing on a sub-space, the covered spaces tend to
coalesce

More opportunities for resolution since most of the variables areMore opportunities for resolution since most of the variables are
common.
Variable activity based heuristics lead to locality based search

SAT Solvers:
R l t d C bilitiRelated Capabilities

Independent Checkers and UNSAT CoresIndependent Checkers and UNSAT Cores
minCostSAT
partialMaxSAT

Extracting an Unsatisfiable Core:
Motivation

Debugging and redesign: SAT instances are often generated from gg g g g
real world applications with certain expected results:

If the expected result is unsatisfiable, but the instance is satisfiable, then
the solution is a “stimulus” or “input vector” or “counter-example” for
debugginggg g

Combinational Equivalence Checking
Bounded Model Checking

What if the expected results is satisfiable?
SAT PlanningSAT Planning
FPGA Routing

Relax constraints:
If several constraints make a safety property hold, are there any
redundant constraints in the system that can be removed withoutredundant constraints in the system that can be removed without
violating the safety property?

58

Extract Unsatisfiable Core
Given an unsatisfiable Boolean Formula in CNFGiven an unsatisfiable Boolean Formula in CNF

F=C1C2......Cn
Find a formula

G=C1’C2’......Cm’
Such that G is unsatisfiable, Ci’ ∈{Ci | i=1...n} with m ≤ n

59

Proof of Unsatisfiability and
U t CUnsat Core

Resolution Graph for UNSAT Instance

Empty
Clause

Original g
Clauses
Learned
Clauses

60

Proof of Unsatisfiability and
U t CUnsat Core

Empty
Clause

Original g
Clauses
Learned
Clauses

61

Proof of Unsatisfiability and
U t CUnsat Core

Empty
Clause

Original

Core Clauses

g
Clauses
Learned
Clauses

62

P bl D fi itiProblem Definition
MinCostSAT: Given a Boolean formula φMinCostSAT: Given a Boolean formula φ
with

n variables }1,0{,...,, 21 ∈ixxxxn variables
each costs

Find a variable assignment

}1,0{,...,, 21 ∈in xxxx
nici ≤≤≥ 10

nX }10{∈Find a variable assignment
satisfies φ
minimizes

X }1,0{∈
X
X minimizes

∑
=

=
n

i
ii xcC

1

X

=i 1

Partial MAX-SAT (PM-SAT)
P bl D fi itiProblem Definition

Two sets of clausesTwo sets of clauses
Non-relaxable or hard
Relaxable or soft

(x’ +x)(x’ +x’)[x +x][x](x’1 +x2)(x’1 +x’2)[x1+x3][x1]

Objective – A truth assignment that
Satisfies all non-relaxable clausesSatisfies all non-relaxable clauses
Satisfies maximum number of relaxable clauses

x1 = 0, x2 = 0, x3 = 11 2 3

Along the spectrum of SAT and MAX-SAT
All clauses are non-relaxable → Classical SAT
All l l bl MAX SATAll clauses are relaxable → MAX-SAT

SAT Applications:

Equivalence Checking, Model
Ch ki B d d M d lChecking, Bounded Model
Checkingg

in Hardware and Softwarein Hardware and Software
Verification

E i l Ch kiEquivalence Checking

Circuit 1

SAT?

Circuit 2

Model Checking Finite State Systems (MC) (Slides courtesy:
A. Gupta, NEC)

Design

Property

Model
Ch k

Yes
Witness

Design Checker
No
Counter-exampleEnvironment

Model checker: Checks whether the design satisfies the property by exhaustive
state space traversal [Clarke et al. 82]
Ad tAdvantages

– Automatic verification method
– Provides error traces for debugging
– No test vectors required: all inputs are automatically considered
– Sound and complete (no false proofs, no false bugs)

Practical Issues
– State space explosion (exponential in number of state elements)
– The system needs to be closed

HVC 2007 From Hardware Verification to Software Verification: Re-use and Re-learn 67

The system needs to be closed
i.e. we need to model the environment (constraints on design inputs, or models)

Verification Approach: e g Model Checking

Automatic Property Verification (Slides courtesy:
A. Gupta, NEC)

Verification Approach: e.g. Model Checking
– Exhaustive state space exploration
– Maintains a representation of visited states (explicit states, BDDs, ckt graphs …)
– Expensive, need abstractions and approximations

Falsification Approach: e.g. Bounded Model Checking
– State space search for bugs (counter-examples) or test case inputs
– Typically does not maintain representation of visited states
– Less expensive, but need good search heuristics

M d l Ch ki AGModel Checking AG p
Does the set of states
reachable from s0
contain a bad state(s)?

s0 !p

Bounded Model Checking
Is there is a path from
the initial state s0
to the bad state(s)?

TR
Step 1

TR
Step 2

TR
Step 4

TR
Step 3

!p?

August 08 IJCAR 08: Software Verification 68

to the bad state(s)? Step 1 Step 2 Step 4Step 3

Bounded Model Checking (BMC)

Main idea: Unroll transition relation logic up to some bounded length to check p

(Slides courtesy:
A. Gupta, NEC)

Main idea: Unroll transition relation logic up to some bounded length to check p

TRTR

inputs

TR TR

property p

TR
Time

Frame n

TR
Time

Frame n-1initial
state

TR
Time

Frame 1

TR
Time

Frame 2

next_state[n-1] =
t t t []Time Frame Expansion present_state[n]Time Frame Expansion

BMC problem translated to a Boolean formula f [Biere et al. 00]

– A bug exists of length k SAT(fk) (formula is satisfiable)
– Satisfiability of fk is checked by a standard SAT solver

Falsification: Can check for bounded length bugs
S l h b tt th f Bi D i i Di (BDD)– Scales much better than use of Binary Decision Diagrams (BDDs)

• BDDs: 100s of state elements
• SAT-based BMC: 10k of state elements

SMT-based BMC can potentially improve performance due to word-level reasoning

August 08 IJCAR 08: Software Verification 69

SMT-based BMC can potentially improve performance due to word-level reasoning

From HW Verification to SW Verification

C Program

(Slides courtesy:
A. Gupta, NEC)

C Program

W OTransition Relation

Symbolic FSM Model
M = (S,s0,TR,L)1: void bar() {

2: int x = 3 , y = x-3 ;

Transformed
C

Program
W

X Y

OTransition Relation3: while (x <= 4) {
4: y++ ;
5: x = foo(x);
6: } CFG

?

Latches
Present State Next State

}
7: y = foo(y);
8: }
9:
10: int foo (int l) {

CFG
Control Flow

Graph

Source-to-source transformations
– For modeling pointers, arrays, structures …

Control Flow Graph: Intermediate Representation

10: int foo (int l) {
11: int t = l+2 ;
12: if (t>6)
13: t - = 3;

– Well-studied optimizations provide simplification and
reduction in size of verification models

– Allows separation of model building phase from model
checking phase

14: else
15: t --;
16: return t;
17: }

August 08 IJCAR 08: Software Verification 70

g p17: }

R fReferences
[GJ79] Michael R Garey and David S Johnson Computers and[GJ79] Michael R. Garey and David S. Johnson, Computers and
intractability: A guide to the theory of NP-completeness, W. H. Freeman and
Company, San Francisco, 1979
[DP 60] M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201–215, 1960
[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5:394–397, 1962
[SS99] J P M Sil d K A S k ll h “GRASP A S h[SS99] J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search
Algorithm for Propositional Satisfiability”, IEEE Trans. Computers, C-48,
5:506-521, 1999.
[BS97] R J Bayardo Jr and R C Schrag “Using CSP look-back[BS97] R. J. Bayardo Jr. and R. C. Schrag Using CSP look-back
techniques to solve real world SAT instances.” Proc. AAAI, pp. 203-208,
1997
[BS00] Luís Baptista and João Marques-Silva, “Using Randomization and g
Learning to Solve Hard Real-World Instances of Satisfiability,” In Principles
and Practice of Constraint Programming – CP 2000, 2000.

R fReferences
[H07] J Huang “The effect of restarts on the efficiency of clause learning ”[H07] J. Huang, The effect of restarts on the efficiency of clause learning,
Proceedings of the Twentieth International Joint Conference on Automated
Reasoning, 2007
[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik.
Chaff: Engineering and efficient sat solver. In Proc., 38th Design
Automation Conference (DAC2001), June 2001.
[ZS96] H. Zhang, M. Stickel, “An efficient algorithm for unit-propagation” In
Proceedings of the Fourth International Symposium on Artificial IntelligenceProceedings of the Fourth International Symposium on Artificial Intelligence
and Mathematics,1996
[ES03] N. Een and N. Sorensson. An extensible SAT solver. In SAT-2003
[B02] F Bacchus “Exploring the Computational Tradeoff of more Reasoning[B02] F. Bacchus Exploring the Computational Tradeoff of more Reasoning
and Less Searching”, Proc. 5th Int. Symp. Theory and Applications of
Satisfiability Testing, pp. 7-16, 2002.
[GN02] E.Goldberg and Y.Novikov. BerkMin: a fast and robust SAT-solver. g
In Proc., DATE-2002, pages 142–149, 2002.

R fReferences
[R04] L Ryan Efficient algorithms for clause-learning SAT solvers M Sc[R04] L. Ryan, Efficient algorithms for clause learning SAT solvers, M. Sc.
Thesis, Simon Fraser University, 2002.
[EB05] N. Eén and A. Biere. Effective Preprocessing in SAT through
Variable and Clause Elimination, In Proceedings of SAT 2005
[ZM03] L. Zhang and S. Malik, Validating SAT solvers using an
independent resolution-based checker: practical implementations and other
applications, In Proceedings of Design Automation and Test in Europe,
20032003.
[LSB07] M. Lewis, T. Schubert, B. Becker, Multithreaded SAT Solving, In
Proceedings of the 2007 Conference on Asia South Pacific Design
Automation uto at o
[HJS08] Youssef Hamadi, Said Jabbour, and Lakhdar Sais, ManySat: solver
description, Microsoft Research-TR-2008-83

