
Formal Methods In Networking

CS 598D, Spring 2010

Princeton University

Lead Instructor: Sanjai Narain, Telcordia Research

narain@research.telcordia.com, 908 337 3636

In Collaboration with

Ehab Al-Shaer, UNC Charlotte

Gary Levin,Telcordia Research

Boon Thau Loo, U. Penn

Sharad Malik, Princeton

Simon Ou, Kansas State

Andreas Voellmy, Yale

Pamela Zave, AT&T Research

Course page: http://www.cs.princeton.edu/courses/archive/spring10/cos598D/FormalMethodsNetworkingOutline.html

Outline

• Course goals and plan

• Why study formal methods?

• Formal methods to be covered

• Their applications to networking problems

– Theory of configuration

– Protocol verification

– Routing protocol design

• Projects

• Reading list

• Schedule

• Notes on logic

Course Goal And Plan

• Obtain working knowledge of formal methods that can solve real problems; stimulate new
research ideas

• Instructors will
– Discuss networking problems: theory of configuration, routing protocol design, protocol verification

– Discuss formal methods for solving these

– Identify open problems

• Students will
– Select one method

– Read 1-2 papers about it

– Use it to solve problems, possibly around a testbed

– Present findings to class

– Speculate on approaches to open problems

• Teams are encouraged. Need synthesis of programming language and networking expertise

• Lectures Mondays, Fridays 9:30-10:50am, Room 302

Why Study Formal Methods?

• Formal method system = Specification language + Inference engine

• We specify “what” is required, i.e., relationships

• Inference engine figures out “how” to compute it

• Precise requirement specification, even if incomplete, is useful

• There is empirical evidence of their usefulness

Formal Methods To Be Covered

• Boolean logic: ipsec_to_a ⊃ uniform_mtu ∨ permitted_icmp_a

– SAT solvers solve millions of constraints in millions of Boolean variables in seconds

– BDDs an alternative to SAT but number of variables handled is much less

• EUF: ipsec_to=ip_address(r0, e0)⊃uniform_mtu=true ∨ permitted_icmp=ip_address(r0, e0)

– Don’t have to name each variable

– SMT solver faster than SAT for this language

• Prolog: permitted_icmp(ip_address(R, E)) ⊂ ipsec_to(ip_address(R, E))

– Quantification over individual variables

– Only one condition in conclusion: “procedural” interpretation; write efficient specification

– Programming language + DB

– SLD resolution. 10s of millions of facts efficiently queried

– Datalog: Prolog without complex terms

• First-order logic: ipsec_to(X) ⊃ uniform_mtu ∨ permitted_icmp(X)

– Quantification over individual variables

– No restriction on number of conditions on left or right side of implication

– Alloy: First-order logic with finite domains. Compile into Boolean; use SAT

• HOL: Quantification over individual, function and predicate variables, e.g., induction principle

• Promela: Quantification over state variables. Used to specify dynamic behavior

Problem 1. Theory of Configuration

Narain, Al-Shaer, Ou

The Gap Between Requirement and Configuration (Glue)

hostname DemoRouter-5

!

router ospf 50

no redistribute connected subnets

redistribute static subnets

network 10.10.6.0 0.0.0.255 area 9

network 104.104.104.0 0.0.0.255 area 9

network 105.105.105.0 0.0.0.255 area 9

!

router ospf 20

no redistribute connected subnets

redistribute static subnets

network 192.168.6.0 0.0.0.255 area 0

!

crypto isakmp policy 1

hash sha

authentication pre-share

!

interface Ethernet1

ip address 192.168.6.1 255.255.255.0

Specification of Fault-Tolerant VPN Implementation (configuration)

Consequences of Configuration Errors

• Setting it [security] up is so complicated that it’s hardly ever done right. While we await a
catastrophe, simpler setup is the most important step toward better security.

– Butler Lampson, MIT. Computer Security in the Real World. IEEE Computer, June 2004

• …human factors, is the biggest contributor—responsible for 50 to 80 percent of network
device outages.

– What’s Behind Network Downtime? Proactive Steps to Reduce Human Error and Improve Availability
of Networks, 2008. http://www.juniper.net/solutions/literature/white_papers/200249.pdf

• We don’t need hackers to break the systems because they’re falling apart by themselves.

– Peter G. Neumann, SRI. “Who Needs Hackers”, NY Times, September 7, 2007.
http://www.nytimes.com/2007/09/12/technology/techspecial/12threat.html

• Things break. Complex systems break in complex ways.

– Steve Bellovin, Columbia University. Above article

8

Bridging Gap Between Requirement and Configuration

Why are these hard?

• How to intuitively specify connectivity, security,
performance and reliability requirements?

• Synthesis, reconfiguration planning and
verification require searching very large spaces

• Security and functionality interact

• Components can correctly work in isolation but
not together

• Removing one error can cause another

• Distributed configuration is not well-understood

• Hard to formalize configuration language
grammar documented in hundreds of pages of
English

End-To-End Requirements

Configurations (machine language)

Requirement specification

Configuration synthesis

Diagnosis

Repair

Reconfiguration planning

Verification

Distributed configuration

Configuration file analysis

Progress Towards Theory of Configuration: ConfigAssure

Kodkod

First order logic: Alloy

FOL→Boolean quantifier elimination
does not scale to large variable ranges

SAT

Solver

Boolean

Solve millions of constraints in
millions of variables in seconds

Requirement

Hard

Arithmetic

Quantifier-Free

Form

Easier (translator in Prolog)
• Specification: Security, connectivity,

performance, reliability requirements

specified as constraints

• Synthesis: Solve constraints

• Diagnosis: Analyze UNSAT-CORE

• Repair: If x=c appears in UNSAT-CORE, it is a

root-cause. Remove it and re-solve

• Reconfiguration planning: Transform safety

invariant into a constraint on times at which

variables change from initial to final value.

Solve.

• Verification: Represent firewall rule-set as a

constraint on generic packet header and

check equivalence

• Configuration file analysis: Represent

commands as a Prolog database and query

• Future: Evaluating EUF and SMT

Progress Towards Theory of Configuration: MulVAL and ConfigChecker

• MulVAL

– Specifies conditions for adversary success

– Optimal identification of configurations to change to prevent attacks

– Specification language: Datalog

– Uses properties of Datalog proofs and MinCost SAT solvers

• ConfigChecker

– Firewall verification with BDD-based model-checking

– Symbolic reachability analysis: Answer questions e.g.:“Does firewall policy

strengthening change the set of packets flowing from A to B?”

Possible Testbeds To Be Built For Theory of Configuration

Built at Telcordia by Tiger Qie of Princeton
LISA-2003

Fault-Tolerant VPN
Narain, LISA-2005

Theory of Configuration Projects

• Prolog: Implement

– Configuration file analyzer

– Configuration file builder

– Configuration visualizer

– Configuration validator

Evaluate against testbed

• SMT solver: Implement ConfigAssure’s

– Synthesis algorithm

– Minimum-cost repair algorithm

– Reconfiguration planning algorithm

Evaluate against testbed

• BDDs

– Evaluate ConfigChecker on testbed

configurations

– Compare ConfigChecker security-policy

verification with ConfigAssure’s

• Datalog+MinCost SAT

– Implement MulVAL’s minimum-cost

vulnerability mitigation algorithm

– Evaluate against testbed

• Software systems

– SWI-Prolog

– XSB Prolog

– SAT: Zchaff, Minisat

– SMT: Yices, CVC3, OpenSMT

– ConfigChecker

• Open problems

– Creating a specification language usable

by administrators

– Scalability of all algorithms

– Convergence of repair algorithm

– Distributed configuration

Problem 2. Protocol Verification

Zave, Voellmy

Protocol Verification

• Verification of distributed systems is hard

• Approach: Check that a system satisfies a behavior invariant

– Lightweight verification of network protocols: The case of Chord

– Proof of an interdomain policy: A load-balancing multi-homed network

• Alloy verification project

– Reproduce results of above paper

– Others, TBD

• Promela/SPIN verification project: TBD

• Isabelle verification projects:

– Isabelle/HOL tutorial: http://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf Read

chapter 1-3,5-7. Chapter 10 demonstrates an application of Isabelle/HOL to proving the

correctness of a security protocol.

– Also, read about Isar (the proof language for Isabelle/HOL) in this short tutorial:

http://isabelle.in.tum.de/dist/Isabelle/doc/isar-overview.pdf

Problem 3. Routing Protocol Design

Loo

Routing Protocol Design

• Declarative routing: Express routing protocols using a database query language
(Datalog)

• Implemented to date:
– Textbook routing protocols (3-8 lines, UCB/Wisconsin)

– Chord DHT overlay routing (47 lines, UCB/IRB)

– Narada mesh (16 lines, UCB/Intel)

– Distributed Gnutella/Web crawlers (Dataflow, UCB)

– Lamport/Chandy snapshots (20 lines, Intel/Rice/MPI)

– Paxos distributed consensus (44 lines, Harvard)

• Project
– Implement routing protocol on declarative networking system called Rapidnet

• Open problems
– Comparing Datalog vs other programming paradigms (Prolog, functional languages and

constraint-logic programming) for designing/implementing networks

– Integration with verification tools (e.g. Alloy, PVS)

– Integration with existing router platforms such as XORP and IOS

– Synthesizing network protocols and configuration from high level declarative constraints
and rules

– In addition, read http://netdb.cis.upenn.edu/research.pdf for ongoing research efforts
and discuss with Prof. Loo for project ideas.

Reading List

• Available on course site

Schedule

Week of Instructor Topic

02/01/10 Introduction and logic programming theory

02/08/10 Introduction to Prolog, and application of Alloy to configuration theory

02/15/10 Application of SAT and SMT solvers to configuration theory

02/22/10

03/01/10 SAT and SMT solvers

03/08/10

3/15/10 NO CLASS

03/22/10

03/29/10 Alloy and application to protocol verification

04/05/10 Binary decision diagrams and their application to security policy verification

04/12/10

04/19/10 Review of papers

04/26/10

05/03/10 Student paper presentations

05/10/10

Narain

Narain

Narain

Loo Datalog and its application to routing protocol design

Malik

Ou Datalog+MinCost SAT solvers for network vulnerability analysis and mitigation

Zave Promela and application to protocol verification

Zave

Al-Shaer

Voellmy/Narain Isabelle and BGP verification

Review of papers

Narain

Student paper presentations

Student paper review reports due 4/30

 Student software project presentations

Software project reports due 5/11

Notes on Logic

What is Logic?

• Study of what follows from what*

• Study of what is a correct inference by examining only form not content

• If “all epihorins are febrids” and “all febrids are turpy” then “all epihorins are
turpy”

– We don’t need to know all the words

• Correct inference

– I have seen a picture of Obama

– Obama is the president of US

– So, I have seen a picture of the president of US

• Incorrect inference

– I have seen a picture of someone

– Someone is the president of US

– So, I have seen a picture of the president of US

*From Logic: Form and Function, J.A. Robinson, Elsevier, 1979

Origins Of Modern Logic

• 1854: George Boole invents Boolean algebra

• 1879: Gottlob Frege invents Begriffsschrift or Concept Language

– Today, it is called the Predicate Calculus

– Extends Boolean algebra with Boolean-valued functions, individual and function
variables and quantifiers over these

– Motivated by trying to derive arithmetic from logic, i.e., prove Peano postulates from
axioms of logic

– This was called the Logicism program

• Peano postulates

– 0 is a natural number

– 0 is not the successor of any natural number

– Every natural number has a successor

– No two natural numbers have the same successor

– Principle of induction: If F holds for 0, and for any n if F holds for n then it holds for the
successor of n, then F holds for all natural numbers

Peano Postulates in Predicate Calculus

By Alonzo Church
UCLA Philosophy Department Course

~1986

1901. Russell’s Paradox

∃S.∀T.¬ α(T, T) ⇔ α(T, S)

• Is the Barber’s “paradox” an instance of Russell’s?

• No. The barber does not exist. But saying that the set does not exist contradicts an assumption of set
theory that for every condition, there must exist a set of objects for which the condition is true

• Russell proposed type theory to avoid the paradox – but strict adherence to it means arguments such as
Cantor’s diagonal argument cannot be carried out. So, he introduced the Axiom of Reducibility

• How can a set belong to itself? Consider the set S of all sets in which every set has more than 5 members.
S has more than 5 members, so it must belong to itself.

belongsset set Russell’s paradox

barber person shaves Barber’s “paradox”

Logic Structure

• Logic has syntax, semantics, axioms and rules of inference

• Syntax: Defines well-formed formulas, wffs

• Semantics: About meanings of wffs
– ∀x. α(x) ⊃β (x) is true under the interpretation α = human, β=mortal. But not other way around

– (∀x. α(x) ⊃β (x) ∧ α(p)) ⊃ β(p) is valid (true no matter what α, β, p mean)

• Model checking: Evaluate if a wff is true in a given interpretation

• Model finding: Find an interpretation in which a wff is true. A.k.a. constraint solving

• Axioms: Valid wffs

• Rules of inference: Derive wffs from others
– Modus ponens: From A and A ⊃ B, infer B.

• Proof: Sequence of wffs starting at axioms, obtained by applications of rules of inference

• Properties of rules of inference:
– Soundness: Starting with axioms, every derived wff is valid

– Completeness: Every valid wff is derivable from axioms

– Consistency: Cannot derive both A and ¬ A

