Formal Methods In Networking

CS 598D, Spring 2010
Princeton University

Lead Instructor: Sanjai Narain, Telcordia Research
narain@research.telcordia.com, 908 337 3636

In Collaboration with
Ehab Al-Shaer, UNC Charlotte
Gary Levin,Telcordia Research

Boon Thau Loo, U. Penn
Sharad Malik, Princeton
Simon Ou, Kansas State
Andreas Voellmy, Yale
Pamela Zave, AT&T Research

Course page: http://www.cs.princeton.edu/courses/archive/spring10/cos598D/FormalMethodsNetworkingOutline.html

Outline

Course goals and plan

Why study formal methods?

Formal methods to be covered

Their applications to networking problems

— Theory of configuration
— Protocol verification
— Routing protocol design

Projects
Reading list
Schedule
Notes on logic

Course Goal And Plan

Obtain working knowledge of formal methods that can solve real problems; stimulate new
research ideas

Instructors will
— Discuss networking problems: theory of configuration, routing protocol design, protocol verification
— Discuss formal methods for solving these
— ldentify open problems

Students will
— Select one method
— Read 1-2 papers about it
— Use it to solve problems, possibly around a testbed
— Present findings to class
— Speculate on approaches to open problems

Teams are encouraged. Need synthesis of programming language and networking expertise

Lectures Mondays, Fridays 9:30-10:50am, Room 302

Why Study Formal Methods?

Formal method system = Specification language + Inference engine
We specify “what” is required, i.e., relationships

Inference engine figures out “how” to compute it

Precise requirement specification, even if incomplete, is useful

There is empirical evidence of their usefulness

Formal Methods To Be Covered

Boolean logic:i psec_ to a O uniformmu O permitted icnp_a

SAT solvers solve millions of constraints in millions of Boolean variables in seconds
BDDs an alternative to SAT but number of variables handled is much less

EUF: i psec_to=i p_address(r, €y Ouniformntu=true O permtted_i cnp=i p_address(ry,

Don’t have to name each variable
SMT solver faster than SAT for this language

Prolog: permitted icnp(ip_address(R, E)) O ipsec_to(ip_address(R E))

Quantification over individual variables

III

Only one condition in conclusion: “procedural” interpretation; write efficient specification
Programming language + DB
SLD resolution. 10s of millions of facts efficiently queried

Datalog: Prolog without complex terms

First-order logic:i psec_to(X) O uniformmu O permtted i cnp(X)

Quantification over individual variables
No restriction on number of conditions on left or right side of implication
Alloy: First-order logic with finite domains. Compile into Boolean; use SAT

HOL: Quantification over individual, function and predicate variables, e.g., induction principle

Promela: Quantification over state variables. Used to specify dynamic behavior

€o)

Problem 1. Theory of Configuration

Narain, Al-Shaer, Ou

The Gap Between Requirement and Configuration (Glue)

A irbem A inberfaces and GRE
hrreds Sk e e arein
R doman

Firmwal polies
Pk £57 ard 5
paxkiats

Al ek mal 1nkerf &oes Such
&5 teese are n S8R doman

Specification of Fault-Tolerant VPN

hostname DemoRouter-5
I
router ospf 50

no redistribute connected subnets
redistribute static subnets

network 10.10.6.0 0.0.0.255 area 9
network 104.104.104.0 0.0.0.255 area 9
network 105.105.105.0 0.0.0.255 area 9
I

router ospf 20

no redistribute connected subnets
redistribute static subnets

network 192.168.6.0 0.0.0.255 area O

I

crypto isakmp policy 1

hash sha

authentication pre-share

I

interface Ethernetl

ip address 192.168.6.1 255.255.255.0

Implementation (configuration)

Consequences of Configuration Errors

Setting it [security] up is so complicated that it’s hardly ever done right. While we await a
catastrophe, simpler setup is the most important step toward better security.

— Butler Lampson, MIT. Computer Security in the Real World. IEEE Computer, June 2004

...human factors, is the biggest contributor—responsible for 50 to 80 percent of network
device outages.

— What’s Behind Network Downtime? Proactive Steps to Reduce Human Error and Improve Availability
of Networks, 2008. http://www.juniper.net/solutions/literature/white papers/200249.pdf

We don’t need hackers to break the systems because they’re falling apart by themselves.

— Peter G. Neumann, SRI. “Who Needs Hackers”, NY Times, September 7, 2007.
http://www.nytimes.com/2007/09/12/technology/techspecial/12threat.html

Things break. Complex systems break in complex ways.
— Steve Bellovin, Columbia University. Above article

Bridging Gap Between Requirement and Configuration

End-To-End Requirements Why are these hard?
A

e How to intuitively specify connectivity, security,
performance and reliability requirements?

Requirement specification e Synthesis, reconfiguration planning and
verification require searching very large spaces
Configuration synthesis

)) e Security and functionality interact
Diagnosis

e Components can correctly work in isolation but

Repair
P not together

Reconfiguration planning _
e Removing one error can cause another

Verification
e Distributed configuration is not well-understood
Distributed configuration

e Hard to formalize configuration language
Configuration file analysis grammar documented in hundreds of pages of
English

v
Configurations (machine language)

Progress Towards Theory of Configuration: ConfigAssure

Easier (translator in Prolog)

Requirement

First order logic: Alloy Arithmetic
Quantifier-Free
Form
Hard Kodkod

FOL — Boolean quantifier elimination
does not scale to large variable ranges

v

» Boolean
SAT Solve millions of constraints in
Solver millions of variables in seconds

Specification: Security, connectivity,
performance, reliability requirements
specified as constraints

Synthesis: Solve constraints

Diagnosis: Analyze UNSAT-CORE

Repair: If x=c appears in UNSAT-CORE, it is a
root-cause. Remove it and re-solve

Reconfiguration planning: Transform safety
invariant into a constraint on times at which
variables change from initial to final value.
Solve.

Verification: Represent firewall rule-set as a
constraint on generic packet header and
check equivalence

Configuration file analysis: Represent
commands as a Prolog database and query

Future: Evaluating EUF and SMT

Progress Towards Theory of Configuration: MulVAL and ConfigChecker

MulVAL

— Specifies conditions for adversary success

— Optimal identification of configurations to change to prevent attacks
— Specification language: Datalog

— Uses properties of Datalog proofs and MinCost SAT solvers

ConfigChecker
— Firewall verification with BDD-based model-checking

— Symbolic reachability analysis: Answer questions e.g.:“Does firewall policy
strengthening change the set of packets flowing from A to B?”

Possible Testbeds To Be Built For Theory of Configuration
() o

- BGP Speaker
I:| Non-BGP Speaker

A irbem A inberfaces and GRE
e Turrel -i Hubt Pauter o brnels 20k x5 B e aren P
SRS Turnel 2" — "‘ R doman b
[] /’ ks
L - . ey | b
. - / i E0: 172.16.4.1 A
- - a,, *» § SRS $3:1721634.1)
o '_,.-"'-.J e, . 1 S0: 172.1632.2 $2:172.16.342 ':'
= g . \ =¥ . J
. .' l-r-.. H..ﬁﬁﬁ \\\\ 'I‘J
- 5 e, 4
- o
'___4/ s B E0: 172.18.46.1
5— " & ol —
Riouter @S 18@ """""""""""""" S 19)
’—\[—— S
" E0/0: 172.18.48.48 o
‘\
\
|

",
Firmwal polies ¥
Pt £55 ard B2 ¢ LoopBack(: 180.1.1.1/2
padiets l'\\ E1/0: 180.190.1.2 aFa ;
@l ek mal irkerf aoes such N) y
&5 e are n SEPF doman 2 E1/1: 180.200.1.2 £ 19020022/

E1/2: 180.200.2.1

7| E1/0: 200.12.3.1

: E1/0: 2001232 |
b LoopBack0: 200.12.1.1/24 LoopBackD: 200.12.2.1/24 .~

S

Fault-Tolerant VPN

Narain, LISA-2005

Built at Telcordia by Tiger Qie of Princeton
LISA-2003

Theory of Configuration Projects

e Prolog: Implement

Configuration file analyzer
Configuration file builder
Configuration visualizer
Configuration validator

Evaluate against testbed

e SMT solver: Implement ConfigAssure’s

Synthesis algorithm
Minimume-cost repair algorithm
Reconfiguration planning algorithm

Evaluate against testbed
e BDDs

Evaluate ConfigChecker on testbed
configurations

Compare ConfigChecker security-policy
verification with ConfigAssure’s

e Datalog+MinCost SAT

Implement MulVAL’s minimum-cost
vulnerability mitigation algorithm

Evaluate against testbed

e Software systems

SWI-Prolog

XSB Prolog

SAT: Zchaff, Minisat

SMT: Yices, CVC3, OpenSMT
ConfigChecker

e Open problems

Creating a specification language usable
by administrators

Scalability of all algorithms
Convergence of repair algorithm
Distributed configuration

Problem 2. Protocol Verification

Zave, Voellmy

Protocol Verification

Verification of distributed systems is hard

Approach: Check that a system satisfies a behavior invariant
— Lightweight verification of network protocols: The case of Chord

— Proof of an interdomain policy: A load-balancing multi-homed network

Alloy verification project
— Reproduce results of above paper
— Others, TBD
Promela/SPIN verification project: TBD

Isabelle verification projects:

— Isabelle/HOL tutorial: http://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf Read
chapter 1-3,5-7. Chapter 10 demonstrates an application of Isabelle/HOL to proving the
correctness of a security protocol.

— Also, read about Isar (the proof language for Isabelle/HOL) in this short tutorial:
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-overview.pdf

Problem 3. Routing Protocol Design

Loo

Routing Protocol Design

Declarative routing: Express routing protocols using a database query language
(Datalog)

Implemented to date:
— Textbook routing protocols (3-8 lines, UCB/Wisconsin)

Chord DHT overlay routing (47 lines, UCB/IRB)
Narada mesh (16 lines, UCB/Intel)

Distributed Gnutella/Web crawlers (Dataflow, UCB)
Lamport/Chandy snapshots (20 lines, Intel/Rice/MPI)
Paxos distributed consensus (44 lines, Harvard)

Project

Implement routing protocol on declarative networking system called Rapidnet

Open problems

Comparing Datalog vs other programming paradigms (Prolog, functional languages and
constraint-logic programming) for designing/implementing networks

Integration with verification tools (e.g. Alloy, PVS)
Integration with existing router platforms such as XORP and I0S

Synthesizing network protocols and configuration from high level declarative constraints
and rules

In addition, read http://netdb.cis.upenn.edu/research.pdf for ongoing research efforts
and discuss with Prof. Loo for project ideas.

Reading List

e Available on course site

Week of
02/01/10
02/08/10
02/15/10
02/22/10
03/01/10
03/08/10
3/15/10

03/22/10
03/29/10
04/05/10
04/12/10

04/19/10
04/26/10

05/03/10
05/10/10

Instructor
Narain
Narain
Narain
Loo

Malik

Ou

Zave

Zave

Al-Shaer
Voellmy/Narain

Narain

NO CLASS

Schedule

Topic

Introduction and logic programming theory

Introduction to Prolog, and application of Alloy to configuration theory
Application of SAT and SMT solvers to configuration theory

Datalog and its application to routing protocol design

SAT and SMT solvers

Datalog+MinCost SAT solvers for network vulnerability analysis and mitigation

Promela and application to protocol verification
Alloy and application to protocol verification
Binary decision diagrams and their application to security policy verification
Isabelle and BGP verification

Review of papers

Review of papers

Student paper presentations

Student paper review reports due 4/30

Student paper presentations

Student software project presentations
Software project reports due 5/11

Notes on Logic

What is Logic?

Study of what follows from what*
Study of what is a correct inference by examining only form not content

If “all epihorins are febrids” and “all febrids are turpy” then “all epihorins are
turpy”

— We don’t need to know all the words

Correct inference
— | have seen a picture of Obama
— Obamais the president of US
— So, | have seen a picture of the president of US

Incorrect inference
— | have seen a picture of someone
— Someone is the president of US
— So, | have seen a picture of the president of US

*From Logic: Form and Function, J.A. Robinson, Elsevier, 1979

Origins Of Modern Logic

e 1854: George Boole invents Boolean algebra

e 1879: Gottlob Frege invents Begriffsschrift or Concept Language
— Today, it is called the Predicate Calculus

— Extends Boolean algebra with Boolean-valued functions, individual and function
variables and quantifiers over these

— Motivated by trying to derive arithmetic from logic, i.e., prove Peano postulates from
axioms of logic

— This was called the Logicism program

e Peano postulates
— 0Ois anatural number
— 0is not the successor of any natural number
— Every natural number has a successor
— No two natural numbers have the same successor

— Principle of induction: If F holds for 0, and for any n if F holds for n then it holds for the
successor of n, then F holds for all natural numbers

Peano Postulates in Predicate Calculus

By Alonzo Church
UCLA Philosophy Department Course
~1986

1901. Russell’s Paradox

set set belongs Russell's paradox

5.07.- a(T, T) = a(T, S)

I >

barber person shaves Barber’s “paradox

Is the Barber’s “paradox” an instance of Russell’s?

No. The barber does not exist. But saying that the set does not exist contradicts an assumption of set
theory that for every condition, there must exist a set of objects for which the condition is true

Russell proposed type theory to avoid the paradox — but strict adherence to it means arguments such as
Cantor’s diagonal argument cannot be carried out. So, he introduced the Axiom of Reducibility

How can a set belong to itself? Consider the set S of all sets in which every set has more than 5 members.
S has more than 5 members, so it must belong to itself.

Logic Structure
Logic has syntax, semantics, axioms and rules of inference
Syntax: Defines well-formed formulas, wffs

Semantics: About meanings of wffs
— [x. a(x) OB (x) is true under the interpretation a = human, B=mortal. But not other way around
— (Ox. a(x) OB (x) Da(p)) U B(p) is valid (true no matter what a, 3, p mean)

Model checking: Evaluate if a wff is true in a given interpretation

Model finding: Find an interpretation in which a wff is true. A.k.a. constraint solving
Axioms: Valid wffs

Rules of inference: Derive wffs from others
— Modus ponens: From A and A [B, infer B.

Proof: Sequence of wffs starting at axioms, obtained by applications of rules of inference

Properties of rules of inference:
— Soundness: Starting with axioms, every derived wff is valid
— Completeness: Every valid wff is derivable from axioms
— Consistency: Cannot derive both Aand - A

