Reconfiguration Planning

CS 598D, Spring 2010
Princeton University

April 19, 2010

Sanjai Narain
narain@research.telcordia.com
908 337 3636
Outline

- Given an initial and final configuration, all components cannot be concurrently reconfigured.

- Problem: In what order should the components be reconfigured so an invariant is never falsified during transition?
 - Invariant examples: security policy not violated, mission-critical services not disrupted

- Related problems
 - How to synthesize only reachable final configurations?
 - How to let configuration variables assume intermediate values?

- Solution
 - Transform an invariant into a constraint on times at which configurations are changed and solve for the times
 - Strengthen synthesis constraint with this to ensure that final configuration is reachable
 - Generalize to allow parameters to assume intermediate values
Example 1: Encryption Before Routing

- route and tunnel are two variables on a router, representing presence of a static route and an IPSec tunnel, respectively

- init[route] = 0; final[route]=1

- init[route] = 0; final[route] = 1

- Invariant: Data only leaves router when encrypted
 - route=1 => tunnel=1

- Safe reconfiguration plan is [tunnel, route] but not [route, tunnel]
Safely Decommissioning Router 1

Invariant: Maintain bidirectional connectivity
and(or(routing_5_6_via_1, routing_5_6_via_4),
or(routing_6_5_via_1, routing_6_5_via_4))

Routing plan:

```
addr(0) = 1
addr(1) = 2
addr(2) = 6
addr(3) = 0
addr(4) = 5
addr(5) = 0
addr(6) = 1
addr(7) = 3
```

Reconfiguration plan: [addr(2), addr(5), addr(4), addr(3), addr(0), addr(1), addr(6), addr(7)]
Reconfiguration Planning Algorithm

- Define Invariant to be preserved as a quantifier free form. This is a Boolean combination of:
 - \(x \ op \ y \)
 - \(\text{contained}(a, m, b, n) \)
 where \(x, y, a, m, b, n \) are integer variables or constants and \(\text{op} \in \{=,<,>,\leq,\geq\} \)

- For each configuration variable \(v \) in Invariant, define a new variable \(\text{time}[v] \) at which \(v \) changes from \(\text{init}[v] \) to \(\text{final}[v] \). Distinct variables change at distinct times.

- \(\text{holds}[t] = \) result of replacing each variable \(v \) in Invariant by if \(\text{time}[v] =< t \) then \(\text{init}[v] \) else \(\text{final}[v] \)

- \(\text{holds}_\text{all_times} = \) conjunction of \(\text{holds}[1],..,\text{holds}[k] \) where \(k \) is the number of configuration variables

- Solve \(\text{holds}_\text{all_times} \) to find \(\text{time}[v] \) for each \(v \)

- For Example 1:
 - Invariant is \(\text{route}=1 \Rightarrow \text{tunnel}=1 \)
 - \(\text{holds}[t]= \) (if \(\text{time}[\text{route}]=<t \) then 1 else 0)=\(1 \Rightarrow \) (if \(\text{time}[\text{tunnel}]=<t \) then 1 else 0)=\(1 \)
 - Solving \(\text{holds}_\text{all_times} \) produces the solution: \(\text{time}[\text{tunnel}]=1, \text{time}[\text{route}]=2 \)
 - The reconfiguration plan is then \([\text{tunnel}, \text{route}] \)
Synthesizing Reachable Final Configuration

- H drops packets from G whose size is larger than H’s MTU, and whose Do Not Fragment bit is set.
- H also sends warning to G in an ICMP message so G can reduce the size of transmitted packets.
- However, G may block ICMP so G will continue to send large packets that H will drop.
- Initial state:
 - MTU at both routers is 1500 and ICMP is blocked.
- Requirement for final state:
 - MTUs of both routers is 1600
- Solution: MTUs of both routers is 1600 and ICMP is blocked.
- But if Invariant is that there is no packet loss due to MTU mismatch then this final state is not reachable.
- A reachable final state is one where the MTU is 1600 and ICMP is enabled for both routers.
- To compute reachable final state, for each variable v, let final[v]=v. Now solve for v and time[v].
Synthesizing Reachable Final Configuration contd.

- Req = \text{and}(\text{gmtu} = 1600, \text{hmtu} = 1600)

- Invariant = \text{or}(\text{gmtu} = \text{hmtu}, \text{and}(\text{gicmp} = 1, \text{hicmp} = 1))

- The final values of variables are:
 - gmtu= 1600
 - hmtu= 1600
 - gicmp= 1
 - hicmp= 1

- The reconfiguration plan is \{\text{gicmp, hicmp, gmtu, hmtu}\}.
 - First enable ICMP at both routers and then increase the MTU
Allowing Variables To Assume Intermediate Values

- Motivating example: Swap distinct IP addresses without introducing duplicates

- In addition to taking on init\[v\] and final\[v\], let variable v also take on a single intermediate value mid\[v\].

- v changes to mid\[v\] at time t1\[v\] and to final\[v\] at time t2\[v\].

- To compute holds\[t\], replace every occurrence of v in Invariant by:
 - if t1\[v\]\textless;=t then init\[v\]
 - else if t2\[v\]\textless;=t then mid\[v\]
 - else final\[v\]

- holds_all_times is the conjunction of holds\[t\] for each value of t in 1,..,2*k where k is the number of configuration variables.

- mid\[v\] need not be known in advance. It is treated as another configuration variable whose value, along with those of t1\[v\] and t2\[v\] will be computed when holds_all_times is solved.

- This idea is generalized to the multiple intermediate values
Putting The Pieces Together

- Given an initial configuration, a requirement on a final state, and an invariant, one can compute a final configuration that:
 - Satisfies requirement
 - Is minimum cost distance from initial configuration
 - Is reachable while preserving invariant

- Constraint solving unifies solutions to all these problems