Reconfiguration Planning

CS 598D, Spring 2010
Princeton University

April 19, 2010

Sanjai Narain
narain@research.telcordia.com
908 337 3636

Outline
Given an initial and final configuration, all components cannot be concurrently reconfigured

Problem: In what order should the components be reconfigured so an invariant is never
falsified during transition?

— Invariant examples: security policy not violated, mission-critical services not disrupted

Related problems
— How to synthesize only reachable final configurations?
— How to let configuration variables assume intermediate values?

Solution

— Transform an invariant into a constraint on times at which configurations are changed
and solve for the times

— Strengthen synthesis constraint with this to ensure that final configuration is reachable
— Generalize to allow parameters to assume intermediate values

Example 1: Encryption Before Routing

route and tunnel are two variables on a router, representing presence of a static route and
an IPSec tunnel, respectively

init[route] = 0; final[route]=1
init[route] = 0; final[route] =1

Invariant: Data only leaves router when encrypted
— route=1 =>tunnel=1

Safe reconfiguration plan is [tunnel, route] but not [route, tunnel]

Safely Decommissioning Router 1

addr(1)
1
addr(7)
addr(0)
3
addr(4)
addr(3)
4
addr(5)

addr(2)
2
addr(6)

Next hop variable Initial value Final value
addr(0) 1 4
addr(1) 2 0
addr(2) 6 6
addr(3) 0 2
addr(4) 5 5
addr(5) 0 3
addr(6) 1 4
addr(7) 3 0

Invariant: Maintain bidirectional connectivity
and(or(routing_ 5 6 via_1, routing 5 6 via_4),
or(routing_6_5 via_1, routing 6 _5 via_4))

routing 5 6 _via_1 =and(addr(0)=1, addr(1)=2, addr(2)=6)
routing 5 6 _via_4 = and(addr(0)=4, addr(3)=2, addr(2)=6)
(6) (
(6) (

routing_ 6 5 via_1=and(addr(6)=1, addr(7)=3, addr(4)=5)
routing_ 6 5 via_4 = and(addr(6)=4, addr(5)=3, addr(4)=5)

Reconfiguration plan: [addr(2), addr(5), addr(4), addr(3), addr(0), addr(1), addr(6), addr(7)]

Reconfiguration Planning Algorithm

Define Invariant to be preserved as a quantifier free form. This is a Boolean combination of:

- Xxopy
— contained(a, m, b, n)
where x, y, a, m, b, n are integer variables or constants and op in {=,<,>,<=,>=}

For each configuration variable v in Invariant, define a new variable time[v] at which v changes from init[v]
to final[v]. Distinct variables change at distinct times

holds[t] = result of replacing each variable v in Invariant by if time[v] =<t then init[v] else final[v]

holds_all_times = conjunction of holds[1],..,holds[k] where k is the number of configuration variables
Solve holds_all_times to find time[v] for each v

For Example 1:
— Invariant is (route=1 => tunnel=1)

— holds[t]= (if time[route]=<t then 1 else 0)=1 => (if time[tunnel]=<t then 1 else 0)=1
— Solving holds_all_times produces the solution: time[tunnel]=1, time[route]=2

— The reconfiguration plan is then [tunnel, route]

Synthesizing Reachable Final Configuration

G H

H drops packets from G whose size is larger than H’s MTU, and whose Do Not Fragment bit is set
H also sends warning to G in an ICMP message so G can reduce the size of transmitted packets
However, G may block ICMP so G will continue to send large packets that H will drop

Initial state:
— MTU at both routers is 1500 and ICMP is blocked.

Requirement for final state:
— MTUs of both routers is 1600

Solution: MTUs of both routers is 1600 and ICMP is blocked
But if Invariant is that there is no packet loss due to MTU mismatch then this final state is not reachable
A reachable final state is one where the MTU is 1600 and ICMP is enabled for both routers.

To compute reachable final state, for each variable v, let final[v]=v. Now solve for v and time[v]

Synthesizing Reachable Final Configuration contd.

Req = and(gmtu = 1600, hmtu = 1600)

Invariant = or(gmtu = hmtu, and(gicmp = 1, hicmp = 1))

The final values of variables are:
— gmtu= 1600
— hmtu= 1600
— gicmp=1
— hicmp=1

The reconfiguration plan is [gicmp, hicmp, gmtu, hmtul].
— First enable ICMP at both routers and then increase the MTU

Allowing Variables To Assume Intermediate Values

Motivating example: Swap distinct IP addresses without introducing duplicates
In addition to taking on init[v] and final[v], let variable v also take on a single intermediate value mid[v].
v changes to mid[v] at time t1[v] and to final[v] at time t2[v].
To compute holds|[t], replace every occurrence of v in Invariant by:
if t1[v]<=t then init[v]
else if t2[v]<=t then mid[v]

else final[v]

holds_all_times is the conjunction of holds[t] for each value of tin 1,..,2*k where k is the number of
configuration variables.

mid[v] need not be known in advance. It is treated as another configuration variable whose value, along
with those of t1[v] and t2[v] will be computed when holds_all_times is solved.

This idea is generalized to the multiple intermediate values

Putting The Pieces Together

e Given an initial configuration, a requirement on a final state, and an
invariant, one can compute a final configuration that:

— Satisfies requirement
— Is minimum cost distance from initial configuration
— Is reachable while preserving invariant

e Constraint solving unifies solutions to all these problems

