
Alloy For Configuration

Lecture 6

CS 598D, Spring 2010

Princeton University

Sanjai Narain

narain@research.telcordia.com

908 337 3636

Outline

• Alloy is a great tool for learning about first-order logic

• The difference between model finding and model checking. Alloy is a model finder

• Alloy by example

• Plan for solving configuration problems with Alloy

• Fault-Tolerant VPN requirements in English

• Their formalization in Alloy

• Solving VPN configuration problems

• Limitations of approach

Model Finder Vs. Model Checker

• An interpretation of a formula is a value of the
free variables in it

• Consider the formula ∀x. α(x) ⊃β (x)

• Its free variables are α and β that range over
unary relations over a non-empty domain

• A model of a formula is an interpretation in
which the formula is true

• Over the domain of living things, the value

– α=human, β=mortal is a model of the
above formula

– But not α=mortal, β=human

• A formula is valid in a domain if it is true for all
interpretations over that domain

• A formula is valid if it is valid in all domains, e.g.

∀x. α(x) ⊃β (x) ∧ ∀x .β(x) ⊃γ (x) ⊃ ∀x. α(x) ⊃γ (x)

p ⊃ (q ⊃ p)

• A model finder finds a model of a formula in a

given domain

• Alloy works by translating a first-order logic

formula into a Boolean one; using a SAT solver

to find a model of the Boolean formula;

translating that model back into a model of the

original formula

• Alloy only finds models in finite domains

otherwise the Boolean formula would not be

finite

• In the domain {1,..,k}, ∀x. α(x) ⊃β (x) is

translated into α(1) ⊃β (1) ∧ … ∧ α(k) ⊃β (k)

• A model checker checks whether a formula is

true in an interpretation

– Typically, formulas are temporal logic ones

and interpretations are state machines

– But, they don’t have to be

Alloy By Example

Requirements in English

• For every router x there is an interface y whose

chassis is x

• No two non-equal interfaces on the same router

are placed on the same subnet

• These are first-order logic requirements

because they quantify over individual variables

Requirements in Alloy

sig router {}

sig subnet{}

sig interface {chassis: router, network: subnet}

pred spec ()

{all x:router | some y:interface | y.chassis = x}

{no disj x1,x2:interface |

x1.chassis=x2.chassis &&

x1.network = x2.network}

run spec for 1 router, 2 subnet, 2 interface (scope)

Model

chassis : = {interface_0 -> router_0, interface_1 ->

router_0}

network : = {interface_0 -> subnet_1, interface_1 ->

subnet_0}

Plan

• Configuration Synthesis: Take output of
Solver

• Requirement Strengthening: Solve for
conjunction of current and new
requirements

• Component Addition. Find model of
requirement in current scope extended
with new component

• Requirement Verification. To show S
cannot hold when R does show R ∧ S is
unsolvable

• Configuration error detection and repair
were rudimentary:

– UNSAT-core concept was unknown
(at Telcordia) at this time (2004-5)

Component Configurations

Satisfying Requirements

RequirementsComponents

Requirement
Solver

Model finder

Fault-Tolerant VPN

Spoke
Router

Hub Router

Remote
Access Server

All external interfaces such
as these are in OSPF domain

Spoke
Router

Hub Router

WAN
Router

GRE Tunnel

IPSec Tunnel

Host
Host

All internal interfaces and GRE
tunnels such as these are in

RIP domain

Firewall policies
permit ESP and IKE

packets

VPN Requirements

• RouterInterfaceRequirements

1. Each spoke router has internal and

external interfaces

2. Each access server has internal and

external interfaces

3. Each hub router has only external

interfaces

4. Each WAN router has only external

interfaces

• SubnettingRequirements

5. A router does not have more than one

interface on a subnet

6. All internal interfaces are on internal

subnets

7. All external interfaces are on external

subnets

8. Every hub and spoke router is connected

to a WAN router

9. No two non-WAN routers share a subnet

• RoutingRequirements

10. RIP is enabled on all internal interfaces

11. OSPF is enabled on all external interfaces

• GRERequirements

12. There is a GRE tunnel between each hub

and spoke router

13. RIP is enabled on all GRE interfaces

• SecureGRERequirements

14. For every GRE tunnel there is an IPSec

tunnel between associated physical

interfaces that secures all GRE traffic

• AccessServerRequirements

15. There exists an access server and spoke

router such that the server is attached in

“parallel” to the router

• AccessControlPolicyRequirements

16. Each hub and spoke external interface

permits esp and ike packets

Alloy Signatures For VPN

sig router {}

sig wanRouter extends router {}

sig hubRouter extends router {}

sig spokeRouter extends router {}

sig accessServer extends router {}

sig legacyRouter extends router {}

sig interface {routing:routingDomain}

sig physicalInterface extends interface {

chassis: router,

network: subnet}

sig internalInterface extends physicalInterface {}

sig externalInterface extends physicalInterface {}

sig hubExternalInterface extends externalInterface {}

sig spokeExternalInterface extends externalInterface

{}

sig subnet{}

sig internalSubnet extends subnet{}

sig externalSubnet extends subnet{}

sig ipsecTunnel {

local: externalInterface,

remote: externalInterface,

protocolToSecure: protocol}

sig greTunnel {

localPhysical: externalInterface,

routing: routingDomain,

remotePhysical: externalInterface}

sig ipPacket {

source:interface,

destination:interface,

prot:protocol}

Specifying GRE Requirement 1 in Alloy

Between every hubExternalInterface x and spokeExternalInterface y there is a greTunnel whose local physical

is x and remotePhysical is y, or vice versa

{all x:hubExternalInterface, y:spokeExternalInterface | some g:greTunnel |

(g.localPhysical=x && g.remotePhysical=y) or

(g.localPhysical=y && g.remotePhysical=x)}

Spoke
Router

Hub Router

Remote
Access Server

All external interfaces such
as these are in OSPF domain

Spoke
Router

Hub Router

WAN
Router

GRE Tunnel

IPSec Tunnel

Host
Host

All internal interfaces and GRE
tunnels such as these are in

RIP domain

Firewall policies
permit ESP and IKE

packets

Specifying SecureGRE in Alloy

For every greTunnel g there is an ipsecTunnel p that secures the gre protocol and whose endpoints are the

same as the physical endpoints of g.

{all g:greTunnel |

some p:ipsecTunnel | p.protocolToSecure=gre &&

((p.local = g.localPhysical && p.remote = g.remotePhysical) or

(p.local = g.localPhysical && p.remote = g.remotePhysical))}

Spoke
Router

Hub Router

Remote
Access Server

All external interfaces such
as these are in OSPF domain

Spoke
Router

Hub Router

WAN
Router

GRE Tunnel

IPSec Tunnel

Host
Host

All internal interfaces and GRE
tunnels such as these are in

RIP domain

Firewall policies
permit ESP and IKE

packets

Configuration Synthesis: Solve PhysicalSpec For A Scope

Pred PhysicalSpec () {

RouterInterfaceRequirements ()

SubnettingRequirements ()

RoutingRequirements ()}

Define a scope:

1 hubRouter, 1 spokeRouter, 1 wanRouter, 1

internalInterface, 4 externalInterface, 1

hubExternalInterface, 1 spokeExternalInterface,

1 ripDomain, 1 ospfDomain, 3 subnet, 0

legacyRouter.

Solution

routing : =

{externalInterface_0 -> ospfDomain_0,

externalInterface_1 -> ospfDomain_0,

hubExternalInterface_0 -> ospfDomain_0,

internalInterface_0 -> ripDomain_0,

spokeExternalInterface_0 -> ospfDomain_0}

chassis : =

{externalInterface_0 -> wanRouter_0,

externalInterface_1 -> wanRouter_0,

hubExternalInterface_0 -> hubRouter_0,

internalInterface_0 -> spokeRouter_0,

spokeExternalInterface_0 -> spokeRouter_0}

network : =

{externalInterface_0 -> externalSubnet_1,

externalInterface_1 -> externalSubnet_0,

hubExternalInterface_0 -> externalSubnet_0,

internalInterface_0 -> internalSubnet_0,

spokeExternalInterface_0 -> externalSubnet_1}

Spoke
Router

WAN
Router

Hub
Router

OSPF Domain

RIP Domain

Requirement Solver generates
solution. Note that Hub and Spoke routers

are not directly connected, due to Requirement 9

Requirement Strengthening

Spoke
Router

Hub
Router

OSPF Domain

RIP Domain
GRE Tunnel

WAN
Router

(PhysicalSpec ∧ GRERequirements)

Alloy automatically sets up the GRE tunnel between the spoke and hub

router and enables RIP routing on the GRE tunnel.

Requirement Strengthening

(PhysicalSpec ∧ GRERequirements ∧ SecureGRERequirements)

Alloy automatically places the IPSec tunnel between the correct physical interfaces to protect the GRE tunnel.

Spoke
Router

Hub
Router

OSPF Domain

IPSec Tunnel

WAN
Router

Component Addition

(PhysicalSpec ∧ GRERequirements ∧ SecureGRERequirements ∧ AccessServerRequirements)

New spoke router is physically connected just to the WAN router

GRE and IPSec tunnels are automatically set up between the new spoke router and hub router and physical
interfaces and GRE tunnels are placed in the correct routing domains.

Spoke
Router

Spoke
Router

Access Server

Hub Router

WAN
Router

Spoke
Router

Hub Router

Access Server

OSPF Domain

Spoke
Router

Hub Router

Symptom: Cannot ping from one internal interface to another

Define BadReq = ip packet is blocked

Check if R1-R16 & BadReq is satisfiable

Answer: WAN router firewalls block ike/ipsec traffic

WAN
Router

Verification: Discovering Cause of IP Packet Drop

Writing Efficient Requirements: Scope Splitting

sig router {}

sig interface {chassis: router}

pred EmptyCond () {}

• When Alloy tries to find a model for EmptyCond in a scope of 50 routers and 50 interfaces it crashes(ed)!

• This is because the cross product of the set of all routers and chassis’ has 50*50=2500 pairs.

• Each subset of this product is a value of the chassis relation. There are 2^2500 subsets!

• We can now try splitting the scope and redefining the specification:

sig hubRouter {}

sig spokeRouter {}

sig hubRouterInterface {chassis:hubRouter}

sig spokeRouterInterface {chassis:spokeRouter}

• Now, Alloy returns a model of EmptyCond for the scope consisting of 25 hubRouters, 25 spokeRouters, 25
hubRouterInterfaces and 25 spokeRouterInterfaces in seconds!

• Note that the scope still contains 50 routers and 50 interfaces. But there are now “only” 2^625 * 2^625 =
2^1250 possible values of chassis relation, or a factor of 2^1250 less.

Writing Efficient Requirements: Using Fewer Quantifiers

pred FirewallPolicyRequirements ()

{(all t:ipsecTunnel | some p1:firewallPolicy |

p1.protectedInterface = t.local &&

p1.prot = ike &&

p1.action = permit) &&

(all t:ipsecTunnel | some p1:firewallPolicy |

p1.protectedInterface =t.remote &&

p1.prot = ike &&

p1.action = permit) &&

(all t:ipsecTunnel | some p1:firewallPolicy |

p1.protectedInterface = t.local &&

p1.prot = esp &&

p1.action = permit) &&

(all t:ipsecTunnel | some p1:firewallPolicy |

p1.protectedInterface = t.remote &&

p1.prot = esp &&

p1.action = permit)

(no disj p1,p2:firewallPolicy |
p1.protectedInterface=p2.protectedInterface
&&

p1.prot=p2.prot && !p1.action=p2.action)}

• Boolean formula contains 216,026 clauses and
73,4262 literals, and the entire process
(compilation to solution) took 2 minutes and 59
seconds.

pred FirewallPolicyRequirements ()

{(all t:ipsecTunnel | some p1,p2,p3,p4:firewallPolicy
|

p1.protectedInterface = t.local &&

p1.prot = ike &&

p1.action = permit &&

p2.protectedInterface = t.remote &&

p2.prot = ike &&

p2.action = permit &&

p3.protectedInterface = t.local &&

p3.prot = esp &&

p3.action = permit &&

p4.protectedInterface = t.remote &&

p4.prot = esp &&

p4.action = permit)&&

(no disj p1,p2:firewallPolicy |
p1.protectedInterface=p2.protectedInterface
&&

p1.prot=p2.prot && !p1.action=p2.action)}

• Boolean formula contains 601,721 clauses and
2,035,140 literals and the entire process took 8
minutes and 19 seconds.

Limitations

• Alloy works well for complex logic and small scopes, not large scopes

• Need for tighter control over FOL� Boolean compilation led to

ConfigAssure:

– Arithmetic QFF, a good intermediary between FOL and Boolean

– Partial evaluation at application layer

– Can handle much larger scopes

References

• Daniel Jackson. Software Abstractions. MIT Press, 2006

• Alloy: http://alloy.mit.edu/community/

• Kodkod. http://alloy.mit.edu/kodkod/

• Sanjai Narain. Network Configuration Management Via Model Finding.

Proceedings of USENIX Large Installation System Administration (LISA)

Conference, San Diego, CA, 2005. Full report.

Next Two Lectures

• Professor Boon Thau Loo on the use of Datalog for implementing routing

protocols

