SMT Solvers For Configuration And
Some Configuration Projects

Lecture 5

CS 598D, Spring 2010

Princeton University
Sanjai Narain

narain@research.telcordia.com
908 337 3636

References For Lectures 2-5

Use of Prolog for configuration file analysis, specification, validation, verification and
configuration

— Network Configuration Validation. Sanjai Narain, Gary Levin, Rajesh Talpade. Chapter in Guide to
Reliable Internet Services and Applications, edited by Chuck Kalmanek (AT&T), Richard Yang (Yale)
and Sudip Misra (IIT). Springer Verlag, 2010

— Using Service Grammar to Diagnose Configuration Errors in BGP-4. Proceedings of USENIX Large
Installation System Administration (LISA) Conference , San Diego, CA, 2003.

ConfigAssure: Solutions to configuration problems and use of Kodkod/SAT

— Declarative Infrastructure Configuration Synthesis and Debugging. S. Narain, V. Kaul, G. Levin, S.
Malik. Journal of Network Systems and Management, Special Issue on Security Configuration, eds.
Ehab Al-Shaer, Charles Kalmanek, Felix Wu. 2008.

Testbed based on description in

— Building Autonomic Systems via Configuration. Proceedings of AMS Autonomic Computing
Workshop, Seattle, WA, 2003.

The Story So Far

Discussed how Prolog can be used:
— To analyze ad hoc configuration language files
— To evaluate whether requirements are true of configurations
— As a metalevel language to convert to other forms such as Graphviz dot files

Motivated the need for constraint solvers for firewall verification

— Used Prolog as a metalevel language to generate constraints and exploit the power of
modern constraint solvers

Discussed the use of constraint solvers for configuration problems:
— Synthesis
— Diagnosis
— Repair
— Repair at minimum cost
— Reconfiguration planning (later)

Today

Show how to build in partial evaluation into the definition of eval to improve
solution efficiency

Discuss the problem of naming large numbers of configuration variables

Motivate the use of SMT solvers for EUF to solve it

Discuss configuration-related projects

Partial Evaluation In eval Predicate

eval(Req, QFF) transforms a requirement into an equivalent QFF

Before submitting the QFF to Kodkod, evaluate parts of it to drastically reduce size
of Kodkod/SAT problem

Even better: don’t even generate true or false parts of a QFF

Example:
— If there are N distinct addresses, and new host has to be added
— Then, there are N*(N+1)/2 constraints to specify that all addresses are distinct

— However, only N constraints are needed to ensure that host address is distinct from
existing ones

This logic can be built into eval

Variable Naming Problem: QFFs Reference Configuration Variables

?- eval(and(good, not(bad)), C)
C=and|

rb
gre_a_local=ra_addr
gre_a_remote=rb_addr coit eth_0 address=200
dest=rb_addr
not [
or[con L
and[eth_0 address=100
gre_a_local=ra_addr ra WAN
gre_a_remote=rx_addr ! “
\ tunnel 0
] \ = ~
\
dest=rx_addr i
5\
] \
] s
,
] el ¥ Col2 eth_0 address=300
T - -

Configuration database with variables
gre(ra, tunnel_0, gre_a_local, gre_a_remote).
ipAddress(ra, eth_0, ra_addr, 0).
ipAddress(rb, eth_0, rb_addr, 0).
ipAddress(rx, eth_0, rx_addr, 0).
static_route(ra, dest, mask, 400). 6

But, How To Name Large Numbers of Variables?
It is hard to give a distinct name to each variable, and remember it when constructing the QFF

Solution: use function applications. Construct large number of variables by combining a small
number of function symbols

gre_a_local local_gre(ra, tunnel_0)
gre_a_remote remote_gre(ra, tunnel_0)
ra_addr ip_address(ra, eth_0)
rb_addr ip_address(rb, eth_0)
rx_addr ip_address(rx, eth_0)

next_hop(ra, ip_address(rx, eth_0), 32)

Now rewrite eval rules:

eval(gre_tunnel(RX, RY), and(
remote_gre(RX, tunnel_0) =ip_address(RY, eth_0),
local_gre(RX, tunnel_0) = ip_address(RX, eth_0))
).
eval(route_available(X, Y), not(next_hop(X, ip_address(Y, eth_0), 32)=0)).

The Equality With Uninterpreted Functions Language

e Fortunately, SMT solvers for the Equality with Uninterpreted Function symbols can take
constraints with variables as function applications, and efficiently reason with these.

e The EUF language is as follows from "Exploiting Positive Equality in a Logic of Equality with
Uninterpreted Functions" by R. Bryant, S. German, M. Velev
http://www.cs.cmu.edu/~bryant/pubdir/cav99a.pdf

rerm o= ITE(formula. ferm. ferm
fimction-symbol tarm. ... term

SJormula - — true | false | term = term
(formmla . formula) | (formula formula) | - formula
predicate-symboll term. . . . tarm

e |TE is the if-then-else operator.

e Good SMT solvers are Yices, CVC3 and OpenSMT. They also contain bitshift operators that
can be used for network addressing.

New Constraint And Its Solution With SMT Solver For EUF

?- eval(and(good, not(bad)), C)

C=
and|

remote_gre(ra, tunnel0)=ip_address(rb, eth0)
local_gre(ra, tunnel0)=ip_address(ra, eth0)
not |

next_hop(ra, ip_address(rb, eth0), 32)=0

]

not [

or|

and|
remote_gre(ra, tunnel0)=ip_address(rx, eth0)
local_gre(ra, tunnel0)=ip_address(ra, eth0)

]

not [
next_hop(ra, ip_address(rx, eth0), 32)=0

]

]
]
]

Solver produces

ip_address(ra, eth0)=34
local_gre(ra, tunnel0)=34
ip_address(rb, eth0)=33
remote_gre(ra, tunnel0)=33
next_hop(ra, 33, 32)=35

ip_address(rx, eth0)=36
next_hop(ra, 36, 32)=0

Configuration Projects Testbed
Fault Tolerant VPN

Single Area OSPF

hos
addr:10.10.18

int:eth2
addri18.18.18.1/24
int:grel int:gre2
addr:4.4.4.2/34

addr:1.1.1.1/24
—

——
- .
int:ethl
int:gre2 f addr:192.168.1.1/24 \ int:grel
addr:4.4.4.1/24 addr:1.1.1.2/24
int:-eth? Mo int:eth2
@ sddrian. 4. 4p.1/24 i addr:l@.ze.zﬂ.lfzfe@
int:ethl r int:ethl =5 |
XR4 addr:192.168.1.4/24 Eddr:192.168.1.2/24 XR2
int:grel int:gre2
addr:3.3.3.2/24 int:ethl addr:2.2.2.1/24
\ addr:192.168.1.3/24 /
b S -
S —

—
" [int:grel
addr:3.3.3.1/24

addr:2.2.2.2/24

host2
addr;38.38.36.2

VPN Implemented With Current Practice

Administrator Creates 12 files like this

interfaces {

restore-original-config-on-shutdown: true

interface grel {
description: "Tunnel to XR1"
disable: false
default-system-config

}

interface gre2 {
description: "Tunnel to XR3"
disable: false
default-system-config

}

interface eth2 {
description: "Local Hosts"
disable: false
default-system-config

}

New VPN Implementation Practice

Administrator creates specification like this
% Host-side router interfaces
subnet([xr1-eth2])
subnet([xr2-eth2]).
subnet([xr3-eth2]).
subnet([xr4-eth3]).

Fault Tolerant VPN iR
Single Area OSPF

% GRE tunnels
subnet([xrl-grel, xr4-gre2]).

int:grez I
addr:4.4.4.1/24

addr 11.1.2128 subnet([xr4-grel, xr3-gre2]).
adarz0. >3 subnet([xr3-grel, xr2-gre2]).

subnet([xr2-grel, xrl1-gre2]).

tigre2

trgrel int:
addr:3.3.3.2f24l f addr:2.2.2.1/24

% OSPF domain

ospf([xrl-grel, xrd-gre2, xrd-grel, xr3-gre2, xr3-grel,
AR xr2-gre2, xr2-grel, xrl-gre2, xrl-eth2, xr2-eth2,
xr3-eth2, xr4-eth2]).

% Static routing
next_hop(hostl, 0.0.0.0, 32)=ip_address(xr1l-eth2).

Sy_nthes?s system will generate next_hop(host2, 0.0.0.0, 32)=ip_address(xr3-eth2).
configurations and then all the files

A Web-Based Configuration Service

Specification
+
Configuration Files

Configuration
Server

Repaired configuration files
+

Safe reconfiguration plan
+

Root-cause analysis and visualization

Towards A Requirement/Constraint Library

Create a set of useful constraints

Allow a user to compose these with logical operators to define complex
constraints

Classes of constraints
— Integrity of logical structures associated with protocols
— Connectivity
— Security
— Reliability
— Performance
— Best practices

Requirement Library For Fault-Tolerant VPN

Configuration variables are of the form

ip_address(H, |)

mask(H, 1)

local_gre(H, 1)
remote_gre(H, |)
next_hop(H, Dest, Mask)
ospf_area(H, I)
ospf_hello_interval(H, 1)
ospf_dead_interval(H, 1)

Primitive constraints are of the form
configuration variable=value

Complex constraints

gre_tunnel(G,, T,,G,, T,) =2
remote_gre(G,, T,)=local_gre(G,, T,), and
local_gre(G,, T,)=remote_gre(G,, T,)

local_gre(G, T) is an address on G

subnet([H,-I,,..,H,-1]) 2
Li. ip_address(H,, T) bitwiseand mask(H, T) is
same

ospf_subnet([H1-I1,..,Hk-Ik]) =
[li. ospf_area(H, 1) is same, and
[i. ospf_hello_interval(H, 1) is same, and
[i. ospf_dead_interval(H,, I.) is same

All IP addresses are distinct

All IP addresses are in a given range

15

Configuration-Related Projects

e Prolog: Implement

Configuration file analyzer
Configuration file builder
Configuration visualizer
Configuration validator

Evaluate against testbed

e SMT solver: Implement ConfigAssure’s

Synthesis algorithm
Minimume-cost repair algorithm
Reconfiguration planning algorithm

Evaluate against testbed

Specification
+
Configuration Files

Configuration
Server

Repaired configuration files
+

Safe reconfiguration plan
+

Root-cause analysis and visualization

Jointly Build This For Fault-Tolerant VPN

Next Class: The Use of Alloy For Configuration

e The challenges that arose and the resolution that led to ConfigAssure

e Will also be preparation for Pamela Zave’s lectures on Alloy for verification

