
1

SMT Solvers For Configuration And

Some Configuration Projects

Lecture 5

CS 598D, Spring 2010

Princeton University
Sanjai Narain

narain@research.telcordia.com

908 337 3636

References For Lectures 2-5

• Use of Prolog for configuration file analysis, specification, validation, verification and

configuration

– Network Configuration Validation. Sanjai Narain, Gary Levin, Rajesh Talpade. Chapter in Guide to

Reliable Internet Services and Applications, edited by Chuck Kalmanek (AT&T), Richard Yang (Yale)

and Sudip Misra (IIT). Springer Verlag, 2010

– Using Service Grammar to Diagnose Configuration Errors in BGP-4. Proceedings of USENIX Large

Installation System Administration (LISA) Conference , San Diego, CA, 2003.

• ConfigAssure: Solutions to configuration problems and use of Kodkod/SAT

– Declarative Infrastructure Configuration Synthesis and Debugging. S. Narain, V. Kaul, G. Levin, S.

Malik. Journal of Network Systems and Management, Special Issue on Security Configuration, eds.

Ehab Al-Shaer, Charles Kalmanek, Felix Wu. 2008.

• Testbed based on description in

– Building Autonomic Systems via Configuration. Proceedings of AMS Autonomic Computing

Workshop, Seattle, WA, 2003.

The Story So Far

• Discussed how Prolog can be used:

– To analyze ad hoc configuration language files

– To evaluate whether requirements are true of configurations

– As a metalevel language to convert to other forms such as Graphviz dot files

• Motivated the need for constraint solvers for firewall verification

– Used Prolog as a metalevel language to generate constraints and exploit the power of

modern constraint solvers

• Discussed the use of constraint solvers for configuration problems:

– Synthesis

– Diagnosis

– Repair

– Repair at minimum cost

– Reconfiguration planning (later)

Today

• Show how to build in partial evaluation into the definition of eval to improve

solution efficiency

• Discuss the problem of naming large numbers of configuration variables

• Motivate the use of SMT solvers for EUF to solve it

• Discuss configuration-related projects

Partial Evaluation In eval Predicate

• eval(Req, QFF) transforms a requirement into an equivalent QFF

• Before submitting the QFF to Kodkod, evaluate parts of it to drastically reduce size

of Kodkod/SAT problem

• Even better: don’t even generate true or false parts of a QFF

• Example:

– If there are N distinct addresses, and new host has to be added

– Then, there are N*(N+1)/2 constraints to specify that all addresses are distinct

– However, only N constraints are needed to ensure that host address is distinct from

existing ones

• This logic can be built into eval

Variable Naming Problem: QFFs Reference Configuration Variables

?- eval(and(good, not(bad)), C)

C= and[

gre_a_local=ra_addr

gre_a_remote=rb_addr

dest=rb_addr

not [

or[

and[

gre_a_local=ra_addr

gre_a_remote=rx_addr

]

dest=rx_addr

]

]

]

Configuration database with variables

gre(ra, tunnel_0, gre_a_local, gre_a_remote).

ipAddress(ra, eth_0, ra_addr, 0).

ipAddress(rb, eth_0, rb_addr, 0).

ipAddress(rx, eth_0, rx_addr, 0).

static_route(ra, dest, mask, 400). 6

rb

rx

ra

rb

rx

ra

But, How To Name Large Numbers of Variables?

It is hard to give a distinct name to each variable, and remember it when constructing the QFF

Solution: use function applications. Construct large number of variables by combining a small
number of function symbols

gre_a_local local_gre(ra, tunnel_0)

gre_a_remote remote_gre(ra, tunnel_0)

ra_addr ip_address(ra, eth_0)

rb_addr ip_address(rb, eth_0)

rx_addr ip_address(rx, eth_0)

next_hop(ra, ip_address(rx, eth_0), 32)

Now rewrite eval rules:

eval(gre_tunnel(RX, RY), and(

remote_gre(RX, tunnel_0) = ip_address(RY, eth_0),

local_gre(RX, tunnel_0) = ip_address(RX, eth_0))

).

eval(route_available(X, Y), not(next_hop(X, ip_address(Y, eth_0), 32)=0)).

7

The Equality With Uninterpreted Functions Language

• Fortunately, SMT solvers for the Equality with Uninterpreted Function symbols can take
constraints with variables as function applications, and efficiently reason with these.

• The EUF language is as follows from "Exploiting Positive Equality in a Logic of Equality with
Uninterpreted Functions" by R. Bryant, S. German, M. Velev
http://www.cs.cmu.edu/~bryant/pubdir/cav99a.pdf

• ITE is the if-then-else operator.

• Good SMT solvers are Yices, CVC3 and OpenSMT. They also contain bitshift operators that
can be used for network addressing.

New Constraint And Its Solution With SMT Solver For EUF

?- eval(and(good, not(bad)), C)

C=

and[

remote_gre(ra, tunnel0)=ip_address(rb, eth0)

local_gre(ra, tunnel0)=ip_address(ra, eth0)

not [

next_hop(ra, ip_address(rb, eth0), 32)=0

]

not [

or[

and[

remote_gre(ra, tunnel0)=ip_address(rx, eth0)

local_gre(ra, tunnel0)=ip_address(ra, eth0)

]

not [

next_hop(ra, ip_address(rx, eth0), 32)=0

]

]

]

]

Solver produces

ip_address(ra, eth0)=34

local_gre(ra, tunnel0)=34

ip_address(rb, eth0)=33

remote_gre(ra, tunnel0)=33

next_hop(ra, 33, 32)=35

ip_address(rx, eth0)=36

next_hop(ra, 36, 32)=0

Configuration Projects Testbed

VPN Implemented With Current Practice

Administrator Creates 12 files like this

interfaces {

restore-original-config-on-shutdown: true

interface gre1 {

description: "Tunnel to XR1"

disable: false

default-system-config

}

interface gre2 {

description: "Tunnel to XR3"

disable: false

default-system-config

}

interface eth2 {

description: "Local Hosts"

disable: false

default-system-config

}

}

New VPN Implementation Practice

Administrator creates specification like this

% Host-side router interfaces

subnet([xr1-eth2])

subnet([xr2-eth2]).

subnet([xr3-eth2]).

subnet([xr4-eth3]).

% GRE tunnels

subnet([xr1-gre1, xr4-gre2]).

subnet([xr4-gre1, xr3-gre2]).

subnet([xr3-gre1, xr2-gre2]).

subnet([xr2-gre1, xr1-gre2]).

% OSPF domain

ospf([xr1-gre1, xr4-gre2, xr4-gre1, xr3-gre2, xr3-gre1,

xr2-gre2, xr2-gre1, xr1-gre2, xr1-eth2, xr2-eth2,

xr3-eth2, xr4-eth2]).

% Static routing

next_hop(host1, 0.0.0.0, 32)=ip_address(xr1-eth2).

next_hop(host2, 0.0.0.0, 32)=ip_address(xr3-eth2).Synthesis system will generate

configurations and then all the files

A Web-Based Configuration Service

Configuration

Server

Specification

+

Configuration Files

Repaired configuration files

+

Safe reconfiguration plan

+

Root-cause analysis and visualization

Towards A Requirement/Constraint Library

• Create a set of useful constraints

• Allow a user to compose these with logical operators to define complex

constraints

• Classes of constraints

– Integrity of logical structures associated with protocols

– Connectivity

– Security

– Reliability

– Performance

– Best practices

15

Requirement Library For Fault-Tolerant VPN

Configuration variables are of the form

ip_address(H, I)

mask(H, I)

local_gre(H, I)

remote_gre(H, I)

next_hop(H, Dest, Mask)

ospf_area(H, I)

ospf_hello_interval(H, I)

ospf_dead_interval(H, I)

Primitive constraints are of the form

configuration variable=value

Complex constraints

gre_tunnel(G1, T1, G2, T2) �

remote_gre(G1, T1)=local_gre(G2, T2), and

local_gre(G1, T1)=remote_gre(G2, T2)

local_gre(G, T) is an address on G

subnet([H1-I1,..,Hk-Ik]) �

∀i. ip_address(Hi, Ti) bitwiseand mask(Hi, Ti) is

same

ospf_subnet([H1-I1,..,Hk-Ik]) �

∀i. ospf_area(Hi, Ii) is same, and

∀i. ospf_hello_interval(Hi, Ii) is same, and

∀i. ospf_dead_interval(Hi, Ii) is same

All IP addresses are distinct

All IP addresses are in a given range

Configuration-Related Projects

• Prolog: Implement

– Configuration file analyzer

– Configuration file builder

– Configuration visualizer

– Configuration validator

Evaluate against testbed

• SMT solver: Implement ConfigAssure’s

– Synthesis algorithm

– Minimum-cost repair algorithm

– Reconfiguration planning algorithm

Evaluate against testbed

Configuration

Server

Specification

+

Configuration Files

Repaired configuration files

+

Safe reconfiguration plan

+

Root-cause analysis and visualization

Jointly Build This For Fault-Tolerant VPN

Next Class: The Use of Alloy For Configuration

• The challenges that arose and the resolution that led to ConfigAssure

• Will also be preparation for Pamela Zave’s lectures on Alloy for verification

