Constraint Solving For Network Configuration

Lecture 4

CS 598D, Spring 2010
Princeton University

Sanjai Narain
narain@research.telcordia.com
908 337 3636




Note On Negation-As-Failure

not(F):-F,!,fail.
not(F).

This is a powerful and well-used feature

But, this is not true negation. The query

?-member(X, [1,2]), not(X=1)

succeeds with X=2 but the equivalent

?-not(X=1), member(X, [1,2])

fails

Constraint solvers handle true negation
correctly



The story so far

e We have seen how Prolog can be used:

— To analyze ad hoc configuration language files
— To evaluate whether requirements are true of configurations
— As a metalevel language to convert to other forms such as Graphviz dot files

e \We motivated the need for constraint solvers for firewall verification

— Used Prolog as a metalevel language to automatically generate constraints and exploit
the power of modern constraint solvers



Today

Discuss the use of constraint solvers for solving configuration problems:
— Synthesis
— Diagnosis
— Repair
— Repair at minimum cost

Again use Prolog as a metalevel language to generate constraints and call a
constraint solver

Reconfiguration planning will be discussed later in semester



ConfigAssure System Architecture

Requirement Configuration database

______________________________________________________________________

Partial Requirement
Evaluator Solver

Quantifier-free constraint

\ 4
Kodkod Boolean ZChaff
Model Finder | Constraints SAT Solver

Solution



What Is the Constraint Language?
Arithmetic quantifier-free form (QFF)

A QFF = Boolean combination of:
- Xopy
— contained(a, m, b, n)
where x, y, a, m, b, n are integer variables or constants and op is =,<,>,<=,>= and

contained(a, m, b, n) means the address range represented by the IP address a and mask m contains
that represented by address b and mask n

It is a good intermediary between full first-order logic and Boolean. Adequate for networking
since most configuration variables are addresses

It simplifies design of algorithms for configuration error diagnosis, repair and reconfiguration
planning

It is efficiently compiled into Boolean by Kodkod, the Java APl underlying Alloy

It is directly solved by SMT solvers. These solvers also have other advantages.



Prolog Specification of VPN Requirements

rb
con eth_0 address=200
con N
eth_0 address=100
ra WAN
y -
I.\ tunnel_0
\
\
\
LY
by
LY
.
e coiz eth_0 address=300
~ i -
Bl

static_route(ra, 300, 32, 400).
gre(ra, tunnel_0, 100, 300).
ipAddress(ra, eth_0, 100, 0).
ipAddress(rb, eth_0, 200, 0).
ipAddress(rx, eth_0, 300, 0).
coi([ra-coil, rb-coil, rx-coi2]).

Specification

good:-gre_connectivity(ra, rb).
bad:-gre_tunnel(ra, rx).
bad:-route_available(ra, rx).

gre_connectivity(RX, RY):-
gre_tunnel(RX, RY),
route_available(RX, RY).

gre_tunnel(RX, RY):-
gre(RX, _, , RemoteAddr),
ipAddress(RY, _, RemoteAddr, ).

route_available(RX, RY):-
static_route(RX, Dest, , ),
ipAddress(RY, _, RemotePhysical, ),
Dest=RemotePhysical.

Evaluating Requirements
?- good.
false
?- bad.
true

With this specification, Prolog will not tell you new
configurations such that good [J not(bad)



Solving Configuration Problems With Constraint Solver

Define a constraint Req on configuration variables x, .. x, such that (good [1not(bad))
For synthesis: solve Req and take the result
Let InitVal be the constraint (x,=c, L. [, =c,) where c,,...,c, are current values of variables

For diagnosis: solve (Req L1 InitVal). Since Req is false for InitVal, solver will return an unsat-core. Any

constraint x=cin it is a root cause

e  Forrepair: from InitVal, delete a constraint x=c in unsat-core and reattempt solution to (Req L InitVal)

e  For repair with cost under T:

Let the cost of changing x. from c, to a new value be G..
Define new variable cx, representing the cost of changing x.
Add the constraint (if x=c.then cx. = 0 else cx, = 0;) to Req
Let TotalCost = cx, +..+ cx,

Solve (Req [ TotalCost<T)

e Use binary search over [0, T] to find repaired configuration at minimum cost



How To Compute Req and InitVal?

Configuration Database With Values Replaced By
Configuration (not Prolog) Variables

static_route(ra, dest, mask, 400).

gre(ra, tunnel_0, gre_a_local, gre_a_remote).
ipAddress(ra, eth_0, ra_addr, 0).
ipAddress(rb, eth_0, rb_addr, 0).
ipAddress(rx, eth_0, rx_addr, 0).

eval(initVal, Cond):-

Cond=and_each(
[dest=300,
mask=0,
gre_a_local=100,
gre_a_remote=300,
ra_addr=100,
rb_addr=200,
rx_addr=300])

Metalevel Version of Specification

eval(X, Y) means Y is the QFF representation of
requirement X

eval(good, Cond):-
eval(gre_connectivity(ra, rb), Cond).

eval(gre_connectivity(X, Y), and(C1, C2)):-
eval(gre_tunnel(X, Y), C1),
eval(route_available(X, Y), C2).

eval(gre_tunnel(RX, RY), and(LocalAddr=Addrx,
RemoteAddr=Addry)):-

gre(RX, _, LocalAddr, RemoteAddr),
ipAddress(RX, _, Addrx, ),
ipAddress(RY, , Addry, ).

eval(route_available(RX, RY), Dest=RemotePhysical):-
static_route(RX, Dest, Mask, ),
ipAddress(RY, _, RemotePhysical, ).



?- eval(and(good, not(bad)), C)

and|
gre_a_local=ra_addr
gre_a_remote=rb_addr
dest=rb_addr
not |
or[
and|
gre_a_local=ra_addr
gre_a_remote=rx_addr
]
dest=rx_addr
]
]
]

Synthesis

?- solve(and(good, not(bad)), C).

con

eth_0 address=100

L}
\ tunnel 0

ra_addr=1,
rb_addr=2,
rx_addr=3,
gre_a_local=1,

gre_a_remote=2,
dest=2]

can

rb

eth_0 address=200

WAN

eth_0 address=300

10



Diagnosis And Repair

?- solve(and(initVal, and(good, not(bad))), C)

Unsat:

C = [gre_a_remote=rb_addr,
gre_a_remote=300,
rb_addr=200] .

initVall = initVal \ {gre_a_remote=300}

?-solve(and(initVall, and(good, not(bad))), C).

Unsat:
C=[dest=rb_addr, dest=300, rb_addr=200] .

initVal2 = initVall \ {dest=300}

?- solve(and(initVal2, and(good, not(bad))), C).

Sat:

C= [ra_addr=100,
rb_addr=200,
rx_addr=300,
gre_a_local=100,
gre_a_remote=200,
dest=200,
mask=0]

11



Repair At Minimum Cost
The cost of changing dest is 4 and 1 for all other variables

eval(topReqg(MaxCost), C):-
eval(good, G),
eval(bad, B),
eval(addr_unique, AU),
add_costs([dest, mask, gre_a_local, gre_a_remote, ra_addr, rb_addr, rx_addr], TotalCost),
and_each([G, not(B), AU, CostC, TotalCost<MaxCost], C),
cost_constraints([dest, mask, gre_a_local, gre_a_remote, ra_addr, rb_addr, rx_addr], CostC).

Initial MaxCost=10 MaxCost=5 MaxCost=3 MaxCost=2
dest 300 200 300 300 unsat
gre_a_local 100 100 301 100
gre_a_remote 300 200 300 300
ra_addr 100 100 301 100
rb_addr 200 200 300 300
rx_addr 300 300 302 301

12



QFF For topReq(10)
Note “implies” constraints at end constraining cost of change

and[
gre_a_local=ra_addr
gre_a_remote=rb_addr
dest=rb_addr
not [
or[
and[
gre_a_local=ra_addr
gre_a_remote=rx_addr
]
dest=rx_addr
]
]
not [
ra_addr=rb_addr
]
not [
rb_addr=rx_addr
]
not [
rx_addr=ra_addr
]
implies(dest=300, cdest=0)
implies(not(dest=300), cdest=4)
implies(mask=0, cmask=0)
implies(not(mask=0), cmask=1)
implies(gre_a_local=100, cgre_a_local=0)
implies(not(gre_a_local=100), cgre_a_local=1)
implies(gre_a_remote=300, cgre_a_remote=0)
implies(not(gre_a_remote=300), cgre_a_remote=1)
implies(ra_addr=100, cra_addr=0)
implies(not(ra_addr=100), cra_addr=1)
implies(rb_addr=200, crb_addr=0)
implies(not(rb_addr=200), crb_addr=1)
implies(rx_addr=300, crx_addr=0)
implies(not(rx_addr=300), crx_addr=1)
cdest+ (cmask+ (cgre_a_local+ (cgre_a_remote+ (cra_addr+ (crb_addr+ (crx_addr+0))))))<10



Next Lecture

Building partial evaluation into eval to reduce the size of generated QFF

Solving the variable-reference problem: how to systematically refer to thousands
of variables?

Projects on configuration

14



