
1

Constraint Solving For Network Configuration

Lecture 4

CS 598D, Spring 2010

Princeton University

Sanjai Narain

narain@research.telcordia.com

908 337 3636

Note On Negation-As-Failure

not(F):-F,!,fail.

not(F).

This is a powerful and well-used feature

But, this is not true negation. The query

?-member(X, [1,2]), not(X=1)

succeeds with X=2 but the equivalent

?-not(X=1), member(X, [1,2])

fails

• Constraint solvers handle true negation

correctly

3

The story so far

• We have seen how Prolog can be used:

– To analyze ad hoc configuration language files

– To evaluate whether requirements are true of configurations

– As a metalevel language to convert to other forms such as Graphviz dot files

• We motivated the need for constraint solvers for firewall verification

– Used Prolog as a metalevel language to automatically generate constraints and exploit

the power of modern constraint solvers

02/08/2010

4

Today

• Discuss the use of constraint solvers for solving configuration problems:

– Synthesis

– Diagnosis

– Repair

– Repair at minimum cost

• Again use Prolog as a metalevel language to generate constraints and call a

constraint solver

• Reconfiguration planning will be discussed later in semester

02/08/2010

ConfigAssure System Architecture

02/08/2010 5

Partial
Evaluator

Quantifier-free constraint

Requirement Configuration database

Solution

Kodkod
Model Finder

Requirement
Solver

ZChaff
SAT Solver

Boolean
Constraints

6

What Is the Constraint Language?

• Arithmetic quantifier-free form (QFF)

• A QFF = Boolean combination of:

– x op y

– contained(a, m, b, n)

where x, y, a, m, b, n are integer variables or constants and op is =,<,>,<=,>= and

contained(a, m, b, n) means the address range represented by the IP address a and mask m contains

that represented by address b and mask n

• It is a good intermediary between full first-order logic and Boolean. Adequate for networking

since most configuration variables are addresses

• It simplifies design of algorithms for configuration error diagnosis, repair and reconfiguration

planning

• It is efficiently compiled into Boolean by Kodkod, the Java API underlying Alloy

• It is directly solved by SMT solvers. These solvers also have other advantages.

7

Prolog Specification of VPN Requirements

Specification

good:-gre_connectivity(ra, rb).

bad:-gre_tunnel(ra, rx).

bad:-route_available(ra, rx).

gre_connectivity(RX, RY):-

gre_tunnel(RX, RY),

route_available(RX, RY).

gre_tunnel(RX, RY):-

gre(RX, _, _, RemoteAddr),

ipAddress(RY, _, RemoteAddr, _).

route_available(RX, RY):-

static_route(RX, Dest, _, _),

ipAddress(RY, _, RemotePhysical, _),

Dest=RemotePhysical.

Evaluating Requirements

?- good.

false

?- bad.

true

With this specification, Prolog will not tell you new
configurations such that good ∧ not(bad)

rb

rx

ra

static_route(ra, 300, 32, 400).

gre(ra, tunnel_0, 100, 300).

ipAddress(ra, eth_0, 100, 0).

ipAddress(rb, eth_0, 200, 0).

ipAddress(rx, eth_0, 300, 0).

coi([ra-coi1, rb-coi1, rx-coi2]).

Solving Configuration Problems With Constraint Solver

• Define a constraint Req on configuration variables x1 .. xk such that (good ∧ not(bad))

• For synthesis: solve Req and take the result

• Let InitVal be the constraint (x1=c1 ∧.. ∧xk=ck) where c1,…,ck are current values of variables

• For diagnosis: solve (Req ∧ InitVal). Since Req is false for InitVal, solver will return an unsat-core. Any

constraint x=c in it is a root cause

• For repair: from InitVal, delete a constraint x=c in unsat-core and reattempt solution to (Req ∧ InitVal)

• For repair with cost under T:

– Let the cost of changing xi from ci to a new value be σi.

– Define new variable cxi representing the cost of changing xi

– Add the constraint (if xi=ci then cxi = 0 else cxi = σi) to Req

– Let TotalCost = cx1 +..+ cxk

– Solve (Req ∧ TotalCost<T)

• Use binary search over [0, T] to find repaired configuration at minimum cost

8

How To Compute Req and InitVal?

Configuration Database With Values Replaced By

Configuration (not Prolog) Variables

static_route(ra, dest, mask, 400).

gre(ra, tunnel_0, gre_a_local, gre_a_remote).

ipAddress(ra, eth_0, ra_addr, 0).

ipAddress(rb, eth_0, rb_addr, 0).

ipAddress(rx, eth_0, rx_addr, 0).

eval(initVal, Cond):-

Cond=and_each(

[dest=300,

mask=0,

gre_a_local=100,

gre_a_remote=300,

ra_addr=100,

rb_addr=200,

rx_addr=300])

Metalevel Version of Specification

eval(X, Y) means Y is the QFF representation of

requirement X

eval(good, Cond):-

eval(gre_connectivity(ra, rb), Cond).

eval(gre_connectivity(X, Y), and(C1, C2)):-

eval(gre_tunnel(X, Y), C1),

eval(route_available(X, Y), C2).

eval(gre_tunnel(RX, RY), and(LocalAddr=Addrx,

RemoteAddr=Addry)):-

gre(RX, _, LocalAddr, RemoteAddr),

ipAddress(RX, _, Addrx, _),

ipAddress(RY, _, Addry, _).

eval(route_available(RX, RY), Dest=RemotePhysical):-

static_route(RX, Dest, Mask, _),

ipAddress(RY, _, RemotePhysical, _).

9

Synthesis

?- eval(and(good, not(bad)), C)

C=

and[

gre_a_local=ra_addr

gre_a_remote=rb_addr

dest=rb_addr

not [

or[

and[

gre_a_local=ra_addr

gre_a_remote=rx_addr

]

dest=rx_addr

]

]

]

?- solve(and(good, not(bad)), C).

C = [

ra_addr=1,

rb_addr=2,

rx_addr=3,

gre_a_local=1,

gre_a_remote=2,

dest=2]

10

rb

rx

ra

rb

rx

ra

Diagnosis And Repair

?- solve(and(initVal, and(good, not(bad))), C)

Unsat:

C = [gre_a_remote=rb_addr,

gre_a_remote=300,

rb_addr=200] .

initVal1 = initVal \ {gre_a_remote=300}

?-solve(and(initVal1, and(good, not(bad))), C).

Unsat:

C=[dest=rb_addr, dest=300, rb_addr=200] .

initVal2 = initVal1 \ {dest=300}

?- solve(and(initVal2, and(good, not(bad))), C).

Sat:

C= [ra_addr=100,

rb_addr=200,

rx_addr=300,

gre_a_local=100,

gre_a_remote=200,

dest=200,

mask=0]

11

Repair At Minimum Cost

The cost of changing dest is 4 and 1 for all other variables

eval(topReq(MaxCost), C):-

eval(good, G),

eval(bad, B),

eval(addr_unique, AU),

add_costs([dest, mask, gre_a_local, gre_a_remote, ra_addr, rb_addr, rx_addr], TotalCost),

and_each([G, not(B), AU, CostC, TotalCost<MaxCost], C),

cost_constraints([dest, mask, gre_a_local, gre_a_remote, ra_addr, rb_addr, rx_addr], CostC).

12

Initial MaxCost=10 MaxCost=5 MaxCost=3 MaxCost=2

dest 300 200 300 300 unsat

gre_a_local 100 100 301 100

gre_a_remote 300 200 300 300

ra_addr 100 100 301 100

rb_addr 200 200 300 300

rx_addr 300 300 302 301

QFF For topReq(10)

Note “implies” constraints at end constraining cost of change

and[

gre_a_local=ra_addr

gre_a_remote=rb_addr

dest=rb_addr

not [

or[

and[

gre_a_local=ra_addr

gre_a_remote=rx_addr

]

dest=rx_addr

]

]

not [

ra_addr=rb_addr

]

not [

rb_addr=rx_addr

]

not [

rx_addr=ra_addr

]

implies(dest=300, cdest=0)

implies(not(dest=300), cdest=4)

implies(mask=0, cmask=0)

implies(not(mask=0), cmask=1)

implies(gre_a_local=100, cgre_a_local=0)

implies(not(gre_a_local=100), cgre_a_local=1)

implies(gre_a_remote=300, cgre_a_remote=0)

implies(not(gre_a_remote=300), cgre_a_remote=1)

implies(ra_addr=100, cra_addr=0)

implies(not(ra_addr=100), cra_addr=1)

implies(rb_addr=200, crb_addr=0)

implies(not(rb_addr=200), crb_addr=1)

implies(rx_addr=300, crx_addr=0)

implies(not(rx_addr=300), crx_addr=1)

cdest+ (cmask+ (cgre_a_local+ (cgre_a_remote+ (cra_addr+ (crb_addr+ (crx_addr+0))))))<10

Next Lecture

• Building partial evaluation into eval to reduce the size of generated QFF

• Solving the variable-reference problem: how to systematically refer to thousands

of variables?

• Projects on configuration

14

