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Abstract

For the past ten years, the de facto interdomain rout-
ing protocol, the Border Gateway Protocol (BGP),
has been been studied in the framework of the Sta-
ble Paths Problem (SPP). The SPP approach revealed
several combinations of node topologies and con-
figurations in which BGP cannot converge to a sta-
ble solution. These misbehaving “gadgets” serve as
counterexamples to desirable BGP behavior, which
we would like to always converge on a stable solu-
tion. For just as long, researchers have been manu-
ally generating these gadgets by hand which is a la-
bor intensive and incomplete process. We apply two
different lightweight modeling techniques in order
to automatically generate these misbehaving gadgets
quickly and completely. We model the static Sta-
ble Paths Problem using Alloy and also the dynamic
Stable Path Vector Protocol using the Promela/Spin
platform. These two approaches serve as a case
study both in the application of lightweight model-
ing to network protocols, but also as a comparison
of two approaches to lightweight modeling. Using
our approach we were able to generate over 10,000
instances of misbehaving gadgets.

1 Introduction

The Internet is a global network of independently ad-
ministered networks. Inside these autonomous sys-
tems, administrators are free to employ any policies
and infrastructure they please. Inside an autonomous
system an interior routing protocol is executed in or-
der to update routing information and is typically a
variant of the shortest path algorithm. Interdomain
routing, by contrast, is the sharing of routing in-
formation between ASes. Interdomain routing has

an inherently different nature from intradomain rout-
ing because routing decisions are based more on lo-
cal policy driven by economic factors rather than on
shortest path metrics. Intradomain routing is accom-
plished on the Internet today exclusively by the Bor-
der Gateway Protocol (BGP).

BGP was very much born out of necessity and
targeted primarily to address the practical concerns
of network operators. Only after the widespread
adoption of BGP did researchers realize that BGPs
flexibility came at the cost of guaranteed conver-
gence. [3] This led researchers to pose the question,
“What problem is BGP solving?” Other interior rout-
ing protocols correspond to a well specified prob-
lem which they are solving: the shortest paths prob-
lem. As stated above, BGP does not solve this prob-
lem; instead, BGP solves the Stable Paths Problem
(SPP). [4] In a very abbreviated form, the essence
of this problem is given a set of nodes, paths among
nodes, preferences among paths, and a destination,
does there exist an assignment of paths to nodes such
that the assignment will be stable. We will provide a
formal speicification of this problem in Section 2.

Further, the Stable Path Vector Protocol (SPVP)
was devised as an abstract model of BGP that solves
the SPP. In creating this framework for understand-
ing BGP, researchers were able to generate coun-
terexamples to desirable behavior called gadgets.
These misbehaving gadgets revealed a serious flaw
in the operation of BGP: given certain conditions,
there exist instances when BGP will never converge
to a stable solution as depicted in Figure 1. Despite
the fact that BGP displays the undesirable behavior,
it is not actually a flaw in BGP itself, but a problem
inherent to the SPP.

Currently, contriving these gadgets is a thought-
intensive, inefficient, and incomplete effort. Given
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Figure 1: These seemingly simple gadgets reveal unstable instances of the Stable Paths Problem that path
vector protocols are unable to solve.

the fact that the SPP and SPVP are themselves ab-
stract models, it would seem that looking for these
misbehaving gadgets is an appropriate application of
model checking tools. In this work we show that
by applying model enumeration tools to the SPP and
model checking tools to the SPVP, we can automati-
cally generate these gadgets far more efficiently than
in current efforts. In Section 2, we cover the math-
ematical foundations of the SPP and relevant model
checking concepts, in Section 3 we cover our imple-
mentations in Alloy and Promela/Spin, in Section 4
we present our results, and in Section 5 we describe
related work and future extensions.

2 Background

2.1 The Stable Paths Problem

The SPP formalism is an abstract model that attempts
to capture the essence of BGP and path vector pro-
tocols, in general, without specifically examining the
implementation details of BGP itself. We begin by
describing the setup of an instance of the stable paths
problem. Let G = (V,E) be an undirected graph of
vertices1 V and edges E where V = {0, 1, 2 . . . n}.
We define 0 as a special node called origin.2 We de-
fine the set peers(u) = {w | {u,w} ∈ E} which cap-
tures all the neighbors of a given node connected by
a single edge.

Paths are defined as the empty path (ε) or
a sequence of vertices. Specifically, p =

1We will use the terms vertex and node interchangeably.
2Although it may seem counterintuitive, the terms origin and

destination are both used to identify the node 0 and the terms are
often used interchangeably.

ε | (vk, vk−1, . . . , v1, v0) from first node vk to last
node v0. This sequence must satisfy the following
constraint: for each i, k ≥ i > 0, {vi, vi−1} ∈ E.
A path is directed from the first node (vk) to the
last nod (v0). We define a concatenation operation
on paths such that if the last node of the first path
P is the same as first node in path Q then, PQ is
a path. We treat concatenation of ε special in that
εP = Pε = P .

For each node v ∈ V , we define the set of permit-
ted paths (Pv) at node v. This set consists of a subset
of all loop-free paths originating at v and terminating
at the origin. For each P ∈ Pv, P = (vvk . . . v10).
The concept of a permitted path correlates to the pol-
icy aspect of BGP: there may be certain paths an
AS is unwilling to take due to economic factors even
though they exist. For each of these sets of permitted
paths at a given node, a node-specific ranking func-
tion λv : Pv → Z+ is defined. If P1, P2 ∈ Pv and
λv(P1) < λv(P2) then P2 is preffered over P1. Let
P =

⋃
v∈V Pv and Λ = {λv | v ∈ V − {0}}.

These elements form an instance S of the stable
paths problem S = (G,P,Λ). We further make
some assumptions to constrain our instance.

• Origin: P0 = {0}

• Empty Path Permitted: ∀v ∈ V, ε ∈ Pv

• Empty Path is lowest: ∀v ∈ V, λv(ε) = 0 and
∀P 6= ε, λv(P ) > 0

• Strictness: If P1, P2 ∈ Pv, P1 6= P2 and
λv(P1) = λv(P2) then P1 = (v u)P ′1, P2 =
(v u)P ′2 such that u is the same next hop for
both paths. Since u could only possibly have
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one path assigned at a given time, this ensures
that no two paths available to v could possibly
be ranked equally. This will become more clear
in a moment.

• Simplicity: If a given path P ∈ P then there
are no repeated nodes in P . We say P is loop-
free.

For a given instance S of the SPP, a function π is
defined as a mapping from a node to a path in that
node’s set of permitted paths. This assignment is ar-
bitrary and does not have to be the most-preffered
path. For all u ∈ V, π(u) : u → Pu. Given a path
assignment (π), only one path from a node’s set of
permitted paths is assigned to a single node.

A path assigned (π(v)) at a node v ∈ peers(u) can
be extended to a neighboring3 node u by concatenat-
ing the edge (u, v) and the path assigned at v. We can
construct a set containing all of these paths available
through neighbors. The set of all possible permitted
paths at u that can be formed by extending the paths
assigned to the peers(u) is defined as:

choices(π, u) =

{
{(u v) π(v) | {u,v}∈E}∩Pu u6=0

{(0)} u=0

Let W be some subset of permitted paths at node
u. We want to identify which path is best in this sub-
set and define the best function accordingly as:

best(W,u) =

{
arg maxP∈W λu(P ) W 6= ∅
ε W = ∅

Here arg max() returns the the single path P ∈W
such that the value λu(P ) is maximal. With these
definitions we can now formulate the definitions of
local and global stability. The path assignment at
node u is stable if

π(u) = best(choices(π, u), u).

The entire path assingment is stable if this holds true
at all nodes u ∈ V . Intuitively, this makes sense
recalling that nodes are abstractions for autonomous
systems. If we think of these nodes as ASes “choos-
ing” a path to the origin and assume that the con-
dition for stability is met, then no AS would want

3The term neighbor is used to denote a member of the set of
peers(u) for a given node u.

to choose a different path because each AS has the
most-preferred path available given the path assign-
ments. The stable paths problem is solvable if there
exists a stable path assignment (π) for a given in-
stance S.

2.2 The Stable Path Vector Protocol (SPVP)

While the SPP is a static description of the problem
we are trying to solve, the SPVP is an abstraction
for BGP that attempts to solve the SPP. The signifi-
cance of the SPVP is that it always diverges when an
instance of SPP has no solution. The SPVP is a dy-
namic process that runs concurrently on all nodes to
solve a given instance of the SPP. To achieve this dy-
namism, we include in our model notions of commu-
nication between the nodes and introduce two new
concepts: rib(u) and rib-in(u ⇐ v). When a node u
adopts a new path P ∈ Pu, it simply sends that exact
path in a message to its neighbors in peers(u). At a
given node u, the node stores its current path to the
origin in a structure called rib(u). For each neighbor
w ∈ peers(u), u stores the most currently received
path from w in a stucture called rib-in(u ⇐ w). We
now redefine our notions of best and choices accord-
ingly:

choices(u) = {(uw)P ∈ Pu | P = rib-in(u⇐ w)}

best(u) = best(choices(u), u).

Using these definitions we can very easily encode
an algorithm that implements the SPVP as shown in
Figure 2.

2.3 Lightweight Modeling

Lightweight modeling is a powerful tool that can be
used to verify the logic of a piece of software or
distributed system. Even though we can use these
tools to identify logical inconsistencies after the fact,
the best time to employ these tools is during the
design phase of system development. Employing
lightweight modeling early on in the development of
a complicated system could reveal logical inconsis-
tencies that lead to undersirable or unexpected sys-
tem behavior. A lighweight model is an abstract
model of a system’s core components irrespective of
implementation details combined with an automated
analysis tool. This focus only on core components
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process spvp(u)
begin

receive P from w →
begin

rib-in(u⇐ w) := P
if rib(u) 6= best(u) then
begin

rib(u) := best(u)
for each v ∈ peers(u) do
begin

send rib(u) to v

end

end

end

end

Figure 2: The above pseudocode describes the pro-
cedure that each node runs dynamically to solve the
stable paths problem

allows us to quickly construct a compact model that
still captures the essential functionality we wish to
verify. The use of analysis tools in lieu of more ex-
pressive theorem provers also makes the approach
lightweight. Theorem provers require extensive do-
main specific knowledge both of the system being
modeled as well as of logical formalism. Analysis
tools allow us to get similar results in a more push-
button manner and generate obscure test cases that
humans would never have come up with. We em-
ploy two different variants of lightweight modeling:
model checking with Promela/Spin and model enu-
meration with Alloy. Each approach seemed a more
appropriate fit to the two problems, Alloy for model-
ing the SPP and Promela/Spin for SPVP. We will dis-
cuss these tools in more detail and their tradeoffs as
applied to these problems in the following sections.

3 Implementation

We devised two different approaches of generat-
ing misbehaving gadgets. From a high-level, we
chose to use Alloy to construct the definitions of
stability in the SPP instances and enumerate in-
stances that violate this definition. We chose to use

Promela/Spin to model the dynamic and distributed
nature of the SPVP protocol. We simulate execution
of the SPVP on generated topologies to identify in-
stances in which the SPVP diverges. These instances
correspond directly to unstable SPP instances. The
following subsections describe these two approaches
in detail.

3.1 SPP in Alloy

3.1.1 Alloy Overview

Alloy is a declarative programming language.
Declarative programming involves describing what
the solution is as opposed to how to implement the
solution as in imperative programming languages
like C or Java. The advantage of using Alloy is that
we only model key properties that are important to
the problem. Alloy itself has four key properties that
affect its employment.

Relation-based. In order to specify the problem
space in Alloy, one defines a set of atoms and re-
lations. Atoms are similar to objects, structs, and
classes that are familiar to the imperative program-
mer. One can build more complex structures and
specify how these atoms interact by the use of re-
lations. Relations make Alloy easy to understand
while still keeping the problem solvable. Relations
also give the programmer flexibility to create a wide
range of models.

No specialized logic. The lack of specialized
logic for concurrency or time ensures that the mod-
els should be fairly easy to understand. It is still
possible to implement these concepts through user
defined atoms and relations. In Alloy, one must be
very precise when specifying a model. This level of
precision means that including “black-box” special-
ized logics may easily lead to confusion and incon-
sistency. Thus, it seems reasonable that Alloy does
not have such specialized logics that programmers
might use without properly understanding the intri-
cate details first.

Scope and counterexamples. In Alloy, the pro-
grammer specifies a particular scope of a program
and the solver will then try to find counterexamples
within this scope. For instance, a hypothetical scope
of an arbitrary problem might be for exactly three
nodes. If Alloy has found no counterexamples and
your encoding of the model is correct, then there
are no counterexamples within that scope. Program-
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mers do not have to spend time contriving obscure
test cases because Alloy exhaustively tries all cases
within a given scope.

SAT solver. Alloy uses logical reduction of these
more complicated models as an input to its SAT
solver backend. SAT solvers have become extremely
powerful over the last decade solving millions of
variables and millions of constraints in only a few
seconds. As SAT solvers and computational power
continue to improve substantially, Alloy will be able
to solve larger scopes and more complicated models.

3.1.2 Using Alloy

In order to effectively use Alloy, one must first have a
crystal clear understanding of the problem. Without
this, it will be extremely difficult to setup the neces-
sary constraints and invariants in the model that will
solve the correct problem. The first step is to create a
set of atoms and relations. These are the fundamental
objects and relationships that will play an important
role in specifying the behavior of our model.

Typically, a problem space will include uninterest-
ing or invalid scenarios. For example, our problem
space of a given graph G = (V,E), we do not care
about graphs that are not fully connected. In order
to ignore this case, we will constrain our model to
include only the exact problem space in which we
are interested. Correctly specifying these constraints
is an iterative process: specify too imprecisely and
you end up with irrelevant counterexamples, specify
too strictly and you may constrain away your entire
problem yielding trivially correct results.

Once the problem space is effectively constrained
to the instances in which we are interested, we cre-
ate invariants that describe the desired behavior of
our model. Correctly specifying these invariants,
along with the constraints, is the foremost challenge
in effectively wielding the power of Alloy. However,
once done correctly, all that is left is to create asser-
tions that our invariants are not violated and Alloy
will enumerate any counterexamples, if they exist.

3.1.3 Solution Design

Creating an Instance of the SPP. With a clear un-
derstanding of how to reason about models in Al-
loy, we can begin to tackle the SPP. We first spec-
ify an instance S of the SPP, which we recall con-
sists of S = (G,P,Λ). An instance of the graph is

fairly straightforward to set up by specifying nodes
as atoms and peers as relations on nodes. Notice that
the current problem space that we have just created
would consider every possible number of nodes in
the peer relation for a given node, including itself.
However, we wish to constrain our problem to proper
instances of the SPP. The following Alloy code ex-
cerpt gives a good example of how we must be spe-
cific in constraining our problem.

fact setupGraph {
/* Neighbor cannot be self */
no v: Vertex | v in v.neighbors

/* Bi-directional graph */
all v1, v2: Vertex | v1 in v2.neighbors =>

v2 in v1.neighbors

/* Must be connected graph */
all v1, v2:Vertex | v1 in v2.*neighbors
}

Next, we establish the set of permitted paths at
each node u(Pu). We already have nodes so we will
insert an additional relation specifying that each node
has some permitted paths. Our current model is lim-
ited to two permitted paths which should suffice in
generating the most well-known gadgets. With an-
other relation, we will constrain what constitutes a
permitted path: a permitted path for a given node
u should begin at node u and end at the destination
node 0. In addition, for each pair of nodes (u, v)
in a path P , each v must be a neighbor to node u.
This corresponds exactly to our definitions of paths
in section 2.1.

It is very important to notice that we only needed
to specify what a permitted path is, not an algorithm
of how to create a list of all permitted paths for each
node. Alloy will in fact enumerate all possible in-
stances of two permitted paths per node when it tries
to generate counterexamples, which is exactly what
we want.

Next, there must be a ranking function. Since
Alloy is already considering all possible instances
of two permitted paths per node, we can introduce
ranking implicitly based on which permitted path ap-
pears first among the two permitted paths. Now, we
have successfully specified a model to generate all
instances of the SPP for a given scope.

Isolating Misbehaving Gadgets. In order to pro-
ceed from creating the instance to the enumeration of
misbehaving gadgets, we must revisit the definitions
of the path assignment function π and the definitions
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Figure 3: This graphic shows the relationship of the
piEntry and piTables of a particular instance.
In this case, table π1(u) captures the path assign-
ment depicted in the graph.

of stability. We recall that stability is defined as the
existence of a path assignment such that each node
has been assigned the best path among its choices:
π(u) = best(choices(π, u), u). Thus, we will gen-
erate all possible path assignments for a particular
instance and then specify an invariant to check for
the existence of such a path assignment.

To model the set of path assignments, we first
introduce a new atom and relation that we call a
piEntry, highlighted green in figure 3, to represent
the mapping of a single node to one of its permit-
ted paths. We also introduce a piTable relation,
highlighted red in figure 3, to be a particular permu-
tation of piEntrys for all nodes. If we specify that
enough unique piTables are in our scope, we nec-
essarily generate all possible path assignments for
each specific instance of the SPP. In figure 3, four
distinct piTables enumerate all possible path as-
signments.

The next step is to specify the appropriate invari-
ant. Global stability is defined as the existence of a
path assignment π such that for all nodes u ∈ V ,
the local stability property holds. Our invariant will
specify exactly that. In the case of two permitted
paths, if a node’s path assignment is its least pre-
ferred path, then its most preferred path must not
be an element of choices(π, u). With our invari-

ant defined, we now just specify a scope (number
of nodes, path length, and number of possible path
assignments) and Alloy will quickly generate coun-
terexamples.

3.1.4 Challenges

The main challenge that we encountered was a com-
bination of an incomplete understanding of the prob-
lem and learning to reason in a declarative manner.
We reached a point in our model where we could
correctly generate an instance of SPP. With this in-
stance, we proceeded to try and specify an invariant
that would identify gadgets without correctly speci-
fying the notion of path assignments. We contiued to
try and coerce the permitted path relations to gener-
ate counterexamples, but this is precisely where we
went wrong. As a result of not correctly specifying
the problem, we were trying to imperatively program
something in a declarative model. We tried to de-
scribe how a node would behave, which is exactly
what an imperative program would do. We were not
thinking in terms of what the solution is. Once we re-
alized this, we introduced the notion of piEntrys
and piTables that let us identify gadgets that have
no stable solution. Learning to think declaratively
and understanding the degree of specificity we must
employ in describing our models proved to be the
most difficult challenges for us.

3.1.5 Limitations

The number of permitted paths in our model limits
its operation most significantly. Currently, each node
has exactly two permitted paths. This limitation orig-
inated in our early stages of development when we
were having trouble correctly specifying the invari-
ant. Reducing the complexity of the model allowed
us to correctly formulate an invariant, but at the cost
of generality. This limitation reduces the number of
instances of the SPP that we can analyze. Gener-
alizing the number of permitted paths is the highest
priority improvement to the Alloy model.

Alloy currently generates myriad isomorphic
counterexamples, especially when as we start to in-
crease the maximum lengths of paths and number of
nodes. While our initial analysis of the counterex-
amples suggest that they are indeed valid gadgets,
reducing or eliminating these repetitive instances
will significantly reduce the analytical overhead in
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post-processing the generated counterexamples. Al-
though we have not implemented a solution to this
problem, we are confident that additional constraints
will eliminate isomorphism in future development.

3.2 SPVP in Promela/Spin

3.2.1 Promela/Spin Overview

Promela is a protocol modeling language originally
developed in the early 1980’s specifically for soft-
ware verificaion. As it was intended to model dis-
tributed and concurrent processes, Promela includes
several “baked-in” features that facilitate modeling a
distributed protocol like the SPVP. Promela includes
support for concurrency through atomic operations
and messaging with FIFO communications channels.
Promela is imperative in nature but supports only
the most basic control-flow and arithmetic opera-
tions; more complicated algorithms are very difficult
to construct in Promela.

Spin is a model checker that uses linear-time tem-
poral logic to verify properties of models described
in Promela. Spin can act as a simulator or an ex-
haustive verifier that can check both safety and live-
ness properties of systems. One of Spin’s greatest
strengths is its ability to non-deterministically ex-
plore the statespace of a given model and identify
cycles in that statespace. Figure 4 shows a simple
statespace diagram that illustrates this ability.

3.2.2 Design

Unlike Alloy, Promela is imperative in nature so
there was no need to relearn how to think about the
problem and our approach using it was straightfor-
ward. We build an instance of the SPP, run a simula-
tion of the SPVP on the instance, and look for cycles
in the statespace. As described above, Spin has cy-
cle detection built-in so all we had to do was find the
correct assertion.

Recall that the SPVP always diverges when run
on an unstable instance of SPP. Revisiting the algo-
rithm from figure 2, we see then that in an unsta-
ble instance some node u will continue to change its
rib(u). If we think of the collection of rib(u) for all
nodes u ∈ V as the network state and recognize that
since there are a finite number of nodes and permit-
ted paths, this divergence necessarily implies a cycle

  

Initial
State

End
State

End
State

Figure 4: Spin explores statespace non-
deterministically and finds inescapable cycles
(circled on the left).

of state transitions. We use the Spin accept con-
struct which is a formalization of the Büchi accep-
tance conditions [6]. Specifically, we detect the cy-
cle where a node repeatedly changes its current rib.
The following Promela code excerpt depicts the im-
plementation of the if-else block in the algorithm
from figure 2 and the accept to catch the cycle.

if (chosen_path != 0) &&
(set_path != chosen_path) ->

accept:
set_path = chosen_path

This cycle detection combined with the non-
deterministic exploration of state has made our
Promela/Alloy approach very effective at identifying
instances of the SPP on which SPVP diverges. Un-
fortunately, this effectiveness does come at a cost:
gadget overload.

3.2.3 Challenges

Isomorphism. The single most significant challenge
in modeling the SPVP in Promela/Spin is avoid-
ing isomorphism. Isomorphism increases the time
it takes the model checker to run because it must ex-
plore more instances than are actually interesting to
us. Many of these instances are simple renumber-
ings of already identified instances. Isomorphisms
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also increase the time it takes humans to analyze an
absurd number of gadgets only to realize they are
yet another isomoprhic instance (YAII). We imple-
mented a simple heuristic isomorphic reduction that
does not eliminate isomorphism altogether, but re-
duces the number of isomorphic instances generated
by over 66%. Our heuristic constrains the nodes such
that for all nodes u, v : u > v → edges(u) ≥
edges(v).

Atomicity. The second most significant chal-
lenge posed in the Promela/Spin model was correctly
specificying atomicity. Because Promela/Spin was
intended to model concurrent and distributed sys-
tems, Spin will try to interleave operations as much
as possible to explore all possible states. However,
this can lead to statespace explosion for our model
and consequently, slow the run-time substantially.
Correctly specifying atomicity also resulted in a sep-
arate 80% reduction in runtime.

Statespace Explosion. Statespace explosion is
partially the result of the preceding two challenges.
Because we still need to apply more optimizations to
improve our implementation, we still cannot perform
an exhaustive search of the statespace without run-
ning into resource limitations on commodity hard-
ware. Consequently, we are often forced to run only
partial statespace searches.

3.2.4 Limitations

While our Promela/Spin model is a general solution
to simulating a topology of n nodes, the realities
of exploring this statespace on commodity hardware
have confined us to very small instances of the SPP.
Further, we do not have a good way to model random
activation sequences. In our model we only activate
nodes in strict round-robin fashion. This strategy has
provided us with numerous examples, but more work
is required to determine whether or not we are ig-
noring potential gadgets by not exploring this states-
pace. In additon to not exploring random activa-
tion sequences, our model cannot identify bi-stable
instances of the SPP. Gadgets such as DISAGREE
have two stable states between which oscillation can
occur. Determining both stable states would require
exploring different activation sequences. Our model
explores only one (described above) activation se-
quence and reports stability or instability for that se-
quence only.

4 Results

4.1 Alloy

4.1.1 Completeness

Since Alloy exhaustively enumerates all possible
combinations within a given constrained problem
and scope, we believe that our model does gener-
ate all statically unsolvable instances of the SPP. We
have been able to verify the existence of known gad-
gets such as BAD GADGET and DISAGREE as fig-
ure 5 depicts. In future work, we would also like to
compare our results with those from Promela. If we
can show that the results are consistent, we can be
reasonably certain we have identified all gadgets in
our scope.

One extremely strong feature of Alloy is that the
model lends itself well to modifications. Recall that
DISAGREE is actally a bi-stable gadget with more
than one unique globally stable solution. The fact
that our model was able to identify DISAGREE was
because we additionally constrained that there exists
only one globally stable path assignment. This cheap
extensibility should permit us to extend our model
to incorporate additional constraints and models of
BGP.

4.1.2 Performance

Our model performs moderately well. The following
table summarizes its performance.

Problem Size Running Time(sec)
n = 4, p = 2 4
n = 5, p = 2 17
n = 6, p = 2 515

Here, n indicates the number of nodes (including
the origin) in the topology and p indicates the num-
ber of permitted paths per node. These results seem
to imply that the model can definitely handle a larger
search space in a reasonable amount of time. Al-
though counterexample enumeration is not supported
by Alloy, we can take advantage of Alloy’s flexibility
by further constraining the problem to exclude these
known results. This approach introduces its own set
of challenges (correctly specifying the gadgets al-
ready seen), but it should be a tractable approach.
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Figure 5: These gadgets demonstrate our model’s verification of existing known gadgets. (a) shows the
original generated gadget, (b) shows the isomorphic reduction of the generated gadget and is visibly iden-
tical to (c) the original BAD GADGET.

4.2 Promela/Spin

4.2.1 Completeness

Unfortunately, due to the limitations described in the
section 3.2.4, we know that we are not getting com-
plete result sets for a given problem size. We have
been able to generate certain well-known gadgets.
For instance, we have been able to generate DIS-
PUTE WHEEL gadget in the n = 4, p = 3 case.
However, we were unable to generate BAD GAD-
GET from the n = 5, p = 2 case. Ostensibly,
we believe this is due the inexhaustive search con-
strained by statespace explosion. Continued work
should seek to ensure that we can get complete re-
sults in a given instance class even if those result in
intractable run-times.

4.2.2 Performance

Even with the optimizations put in place thus far,
our Promela/Spin model has not scaled well. The
following table summarizes our results.

Problem Size Running Time(sec)
n = 4, p = 2 31
n = 4, p = 3 1320
n = 5, p = 2 66800

Clearly, our model has reached the limit of its
computational ability at this stage of development.
We are hopeful that continued work in reducing iso-
morphism will allow us to increase the problem size

and reduce runtime. On the other hand, the most in-
teresting gadgets come in small instances so we do
not need to improve the model much to reach the up-
per bound of our interest.

4.3 The Gadgets

In the Promela/Spin model, we were able to generate
over 10,000 instances of isomorphic gadgets in the
n = 4, p = 3 case. Of course, not all of these are
interesting, but the sheer number demonstrates the
power of our models, even in their nascent stages of
development. The following table summarizes the
purportedly unique gadgets we have generated for a
given problem size using Promela/Spin.

Problem Size Number of Gadgets
n = 4, p = 2 10
n = 4, p = 3 3236
n = 5, p = 2 70

While there may exist some isomorphism still, we
have not yet had a chance to fully evaluate the results
generated. Further analyis of the gadgets will be the
immediate next phase of this project.

Although we have generated hundreds of Alloy
gadgets as well, we have not had a concrete way of
enumerating the instances thus far and we know that
some counterexamples are duplicated. Recent model
improvements should allow us to better constrain our
counterexamples such that they are uniquely gener-
ated.
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5 Related Work

5.1 Lightweight Modeling

Zave’s work on lightweight verification of the Chord
distributed hash table demonstrated the utility of ap-
plying lightweight modeling to network protocols.
As in our work, Zave implemented a lightweight
model in Alloy for an existing protocol. Zave ex-
amines both the full Chord protocol and a pure-join
only model. [8] The models revealed that none of the
six “provably correct” properties of Chord held. This
work demonstrated the value of modeling existing
network protocols for verification, but more impor-
tantly, the value in using lightweight models when
designing network protocols.

5.2 SPP and Interdomain Routing

Griffin promulgated the SPP and SPVP in several in-
dependent publications beginning in 1999. [3] Grif-
fin showed that the SPVP always diverges when run
on unstable instances of the SPP. [4] Griffin also de-
vised a construct called a dispute wheel which is an-
other abstract representation of conflicting routing
policies. Griffin shows that if no dispute wheel can
be constructed, then there exists a unique stable solu-
tion to the SPP for a given instance. However, Grif-
fin also showed that SPVP can diverge on instances
where a unique stable solution exists. In these cases,
if no dispute wheel exists then the SPVP will not di-
verge.

Gao and Rexford built upon Griffin’s work by
demonstrating that the imposition of certain con-
ditions on the SPP would ensure that SPVP al-
ways converges. [2] These conditions are grounded
in common business practices of internet service
providers (ISP) and group the nodes into customers,
providers and peers. These different groups have
constrained behavior from the standard SPP model
in which nodes could have arbitrary combinations of
permitted paths and ranking functions.

Sami and Schapira built upon Gao and Rexford’s
work by showing that any topologies that obey the
“Gao-Rexford Conditions” will not only be sta-
ble but will converge, worst case, polynomially in
the length of the longest directed customer-provider
chain. [5] Sami and Schapira also showed that bi-
stable instances of the SPP are also subject to persis-
tent routing oscillations.

Cittadini built on upon Griffin, Gao, and Rex-
ford’s work with the SPP and determined that the
precise model of activation can lead to different out-
comes. [1] Cittadini identified gadgets that have dif-
ferent convergence properties based on the type of
activation used.

5.3 Future Work

5.3.1 Implementation Improvements

Our models certainly need additional work. The
three most important implementation improvements
would be to eliminate isomorphism in both models,
generalize the Alloy model for p > 2 cases, and en-
able random activations for the Promela/Spin model.
Of course, continued analysis of the gadgets we have
generated will continue concurrently.

5.3.2 Additional Applications to BGP/SPP

Our approach should extend to other models of inter-
domain routing and assist in validating their claims
about convergence under the new models. Imposing
the Gao-Rexford conditions should be a natural ex-
tension of the constraints we are already using in the
Alloy model. New models of BGP such as Neigh-
bor Specific BGP (NS-BGP) have been proposed that
impose fewer constraints than the Gao-Rexford but
still guarantee safety. [7] Applying our models to this
problem also seems like a natural extension of this
work.

5.3.3 Existing Protocols & Protocol Design

Interdomain routing is not the only aspect of net-
working that would benefit from lightweight mod-
eling. Literally hundreds of network protocols exist
that have little or no formal verification of their prop-
erties. Any one of them could benefit from a thor-
ough lightweight analysis. More importantly though,
network protocol designers must learn to integrate
lightweight modeling into the design process. Wait-
ing to conduct this modeling until after protocols are
“in the wild” does not make any sense at all. We fully
intend to practice what we preach and are currently
creating a model for Scaffold4, a nascent data center

4http://sns.cs.princeton.edu/projects/
scaffold/
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networking protocol under development at Prince-
ton.

6 Conclusions

We have demonstrated two successful lightweight
modeling approaches to the stable paths problem and
the stable path vector protocol. We created a static
model of and conducted analysis on the SPP with
Alloy. This approach was able to indentify unsolv-
able instances of the SPP that have no stable solu-
tion. We also created a dynamic model of the SPVP
in Promela and conducted model checking with Spin.
This approach was able to indentify instances of the
SPP that lead to divergent behavior of the SPVP.
Both approaches yielded numerous results, but the
implementations of both approaches suffer from dif-
ferent limitations at this stage of development. We
were able to generate over 10,000 non-unique mis-
behaving gadgets and over 3,000 unique gadgets up
to a problem size of n = 5 nodes. We look forward
to continuing to improve our current models to in-
crease generality in the application to the SPP/SPVP,
but also to extend our models to include new models
of BGP and interdomain routing. This application
of lightweight modeling should demonstrate that the
technique is an indispensible tool in verifying net-
work protocol logic and identifying counterexamples
to desired behavior.
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