Stable Path Problem Specification in Alloy
Sanjai Narain
narain@research.telcordia.com

The network state is a set of node-rib pairs. Each pair defines the node’s current route
(rib) to a fixed sink node. Define a state transition relation trans modeling the route
selection and dissemination activity at each node. Then, ask Alloy to check if there is a
sequence of states sy, ..., Sk such that trans[sg, s1] && .. && trans[sy, so]. Any solution
returned by Alloy represents a bad gadget. The gadget consists of:

e Atopology specifying the endpoints of each edge
* The preferred and backup paths for each node. These are the permitted paths
* An oscillating sequence of states

Note that Alloy not only generates the oscillating sequence but also the topology and
path preferences. One only supplies as inputs the definition of trans and sizes of sets of
nodes, edges and node-rib pairs. Empty paths are not modeled as yet.

Given states s and t, trans[s, t] provided:
s and t are different, and
For every non-sink node:
At least one permitted path for the node can be constructed from s, and
If node’s preferred path can be constructed, then it is node’s rib in t, and
If node’s preferred path cannot be constructed, then node’s backup path is
the node’s rib int

A node’s preferred path can be constructed from a state, provided:
A path can be constructed for that node from the state, and
This path is the preferred path

A path can be constructed for a node from a state, provided:
The node is directly connected to sink, or
The node is directly connected to another node and that node has a rib in the
state

Similarly, for a node’s backup path being constructed from a state.

Alloy generated the following bad gadget consisting of 7 nodes, 10 edges and an
oscillating sequence of four states, in 50 seconds:

0
2 - \

sink

2

Network Topology

Permitted Paths and Preferences

0s 1208 | 2108 | 3S 43s 530S

03s 108 20S 30S 453S | 53S

State Transitions

s0 53S 43S 3S 0S 210S 1208
sl 53S 43S 3S 0S 20S 10S
s2 53S 43S 3S) 210S 120S
s3 53S 43S 3S ') 20S 10S
sO 53S 43S 3S 0S 210S 120S

-- The Alloy model is given below

-- Arib is a node's static route to a fixed destin
sig node_rib_pair {device: node, rib: seq node}

-- A state is the set of rib of all nodes
sig state {node_rib_pairs: set node_rib_pair}

-- A node has two permitted paths to sink, path_1 a
sig node {path_1: seq node,path_2: seq node} -- pat
the node's permitted paths

-- A sink is the fixed destination
sig sink extends node {}

-- An edge has two end points.
sig edge {end_point_1: node, end_point_2: node}

-- All edges are distinct
fact {all disj el, e2:edge | not identical_edge[el,

-- Edge endpoints are distinct
fact {all ezedge | e.end_point_1 != e.end_point_2}

-- Each state has a single rib for each node except
fact {all s:state | all x:node | x!=sink => (one y:
y.device=x)}

-- No state has a rib for the sink node
fact {all s:state | not (some x:s.node_rib_pairs |

-- All ribs are permitted
fact {all x:node_rib_pair | permitted[x.device, x.r

-- All permitted paths lead to sink and are distinc
fact {all x:node | not(x=sink) => (is_path[x, sink,
is_path[x, sink, x.path_2] && x.path_1 != x.path_2)

pred permitted[x:node, y:seq node] {x.path_1=y || X

pred directly _connected[nl:node, n2:node]

{
some e:edge |
(e.end_point_1 =nl && e.end_point_2 = n2)
(e.end_point_1 =n2 && e.end_point_2 = n1l)
}

pred is_path [S:node, D: node, P:seq node]
{

not(hasDups[P]) && -- Removing this creates a so
first[P]=S &&
last[P]=D &&

ation sink

nd path_2
h_1 and path_2 are

e2]}

for the sink node
s.node_rib_pairs |

x.device=sink)}

ib]}
t
X.path_1] &&

lution

all i: P.inds -P.lastldx | directly_connected[P[il, P[i+1]]
}

-- Two edges are identical if their end points matc h in any order. Not
used in the model
pred identical_edge[el, e2:edge] {

(el.end_point_1=e2.end_point_1 &&

el.end_point_2=e2.end_point_2) ||

(el.end_point_1=e2.end_point 2 &&

el.end_point_2=e2.end_point_1)

}

-- Node n's path_1 is available in the current stat es

pred path_1_available[s:state, n:node]

{ (n.path_1[0]=n && n.path_1[1]=sink) || -- n is directly

connected to sink
(some x:s.node_rib_pairs |
directly_connected[n, x.device] &&
n.path_1=(x.rib).insert[0, n])

-- Node n's path_2 is available in the current stat es
pred path_2_available[s:state, n:node]
{ (n.path_2[0]=n && n.path_2[1]=sink) || -- n is directly

connected to sink
some x:s.node_rib_pairs |
directly_connected[n, x.device] &&
n.path_2 = (x.rib).insert[0, n]

-- Legal transition from state s to state t
-- s and t are different
-- For every non-sink node n:
-- n's path_1 or path_2 are available in s
-- If path_1 is available, then itis n's rib in t
-- If path_1 is unavailable, then path_2 is n's ribint
pred trans[s:state, t:state]
{ different_states[s, t] &&
all n:node |
(n !'=sink) =>
((path_1_available[s, n] || path_2_available[s, n]) && -- one path
is available in s
(path_1_available[s, n] => has_path_1[n, t]) &&
((not path_1_available[s, n]) => has_path_2[n, t])
}

pred has_path_1[n:node, s: state]

some y:s.node_rib_pairs | y.device=n && y.rib=n.

}

pred has_path_2[n:node, s: state]

{

some y:s.node_rib_pairs | y.device=n && y.rib=n.

pred different_states[s, t:state]

{

some x:s.node_rib_pairs, y:t.node_rib_pairs | x.
x.rib!l=y.rib
}

-- Find a three state bad gadget
pred test_3_state_3_node_3_edge []
{
some disj s0, s1, s2:state |
trans[s0, s1] && trans[sl, s2] && trans[s

-- Find a 6 state bad gadget with 7 nodes
pred test_4 state 7 node_10_edge |]
{
some s0, s, s2, s3:state |
trans[s0, s1] &&
trans[sl, s2] &&
trans[s2, s3] &&
trans[s3, s0O]

-- Explore all gadgets up to a certain size
pred test_all []
{
some s:seq state | #5>3 && all i:s.inds -s.last
s[i+1]] && trans|[s[s.lastldx], s[0]]
}

run test 3 state 3 node_3_edge for exactly 3 state,

exactly 3 edge, 6 node_rib_pair

run test 4 state 7 node_10_edge for exactly 4 state

edge, 10 node_rib_pair

path_1

path_2

device=y.device &&

Idx | trans]s][i],

exactly 3 node,

, exactly 7 node, 10

