Lecture 6 - Length extension, pseudorandom functions

Boaz Barak

February 17, 2010

Quick review The PRG Axiom, encryption schemes with key size < message size.
From last time

Theorem 1. If there exists a pseudorandom generator with stretch £(n) = n + 1 then for
every constant c, there exists a pseudorandom generator with stretch £(n) = n°.

Polynomial hybrid argument To show X =~ Z it suffices to come up with Yy, Y7,...,Y,, such
that Yo=X,Y,, =Z and Y; = Y;;1.

Proof of Theorem 1 Assume that we have a pseudornadom generator G’ mapping n bits to n+1
bits. We'll construct from it a pseudorandom generator G mapping n bits to £(n) bits for
every £(n) = n°. The running time of G will be roughly ¢(n) times the running time of G'.
The operation of G is as follows: (notation: for a string € {0,1}*, and i < j <k, T4 18
TiTig1 " Tj)

Input: z € {0,1}".

J=0

20 — g

while j < {(n):
je=i+1
2 G (el

output xq(jj_l

We define random variables YO ... V(™) gyer {0,1}™. Intuitively, Y@ will correspond
to running the pseudorandom generator from the i*" iteration onwards, starting from the
uniform distribution U,,4+;. More formally, Y@ is obtained by concatenating a random i bit
to the output of the following algorithm G™~% on input = < {0, 1}™:

Algorithm G° Input: x € {0,1}".

J < Jo

20 — g

while j < {(n):
y — G'(«U™D)
x(jJrl) T Y.n)

Gn
Gn Gy ,
T —> | e | 2Py —> I L S
1 2
x$z+)1 x;ll xi(+1
Output

Figure 1: Extending output of pseudorandom genertator

output Yn+t1
J—=J+1

Note that Y () = G(U,,) and Y™ = U,,. Therefore, the result will follow by showing that
YO ~ Y™ By the transitivity of computational indistinguishability, it suffices to prove:

Claim 2. For every i € [m], Y =~ Y+

Proof. Note that Y = U;G"%(U,) and YD = U;,,G™*~1(U,). Both start with i
random bits and so it suffices to show that X = G(m*")(Un) ~Y = UlG(m*ifl)(Un). Define
f:{0,1}" — 0,1} as follows: f(y) = yn+1G(m_i_1)(y[1“n}). Note that:

o X = f(G(Un).

oY = f(UnJrl)'
But since G'(U,) =~ Up41, it follows that f(G'(Uy)) ~ f(Upt1) for every polynomial-time
computable function f. O

Note: This proof technique — proving that two distributions X and Y are indistinguishable
by presenting intermediate distributions X© ..., X(™ with X(© = X and X(™ =Y and
the showing that X is indistinguishable from X (+1) — is called the hybrid technique, and
is a very important technique in cryptographic proofs. I recommend that you also review
this proof in Section 3.4 of the Boneh-Shoup book (note that they start with a warmup
case, showing that if G is a pseudorandom generator then the function G'(x1,...,z) =
G(x1)G(x2) - - - G(xy) is also a pseudorandom generator).

Pseudorandom functions A random function F'(-) from n bits to n bits can be thought of as
the following process: for each one of its possible 2" inputs x, choose a random n-bit string to
be F(x). This means that we need 2" - n coins (which is a lot) to choose a random function.
We also need about that much size to store it.

We see that a function that can be described in n bits is very far from being a random function.
Nevertheless we’ll show that under our Axiom, there exists a pseudorandom function collection

that can be described and computed with poly(n) bits but is indistinguishable from a random
function.

We let F = {fs}sefo,13+ be a collection of functions. Suppose that fs : {0, 1Ml — £0, 1}1s
(this is not important and we can generalize the definition and constructions to different
input and output lengths). We say that the collection is efficiently computable if the mapping
s,x — fs(x) is computable in polynomial time. Fix an efficiently computable collection and
consider the following two games:

Game 1:

e s is chosen at random in {0, 1}".
e Adversary gets black-box access to the function fs(-) for as long as it wishes (but less
than its poly(n) running time).

e Adversary outputs a bit v € {0, 1}.
Game 2:

e A random function F': {0,1}" — {0,1}" is chosen.
e Adversary gets black-box access to the function F(-) for as long as it wishes (but less
than its poly(n) running time).

e Adversary outputs a bit v € {0,1}.

F is a pseudorandom function (PRF) ensemble, if for every poly-time Adv and poly-bounded
e : N — [0, 1], and large enough n

Pr[Adv outputs 1 in Game 1] — Pr[Adv outputs 1 in Game 2]| < ¢(n)

GGM result Intuitively, it is not at all clear that such functions should exist. However, it was
proven by Goldreich Goldwasser and Micali that if PRG exist then so do PRFs. (The other
direction is pretty easy — can you see why?)

Construction of PRFs As you can see on the web page, there are several candidate constructions
for PRFs. However, for us the important thing is that we don’t need to introduce a new axiom,
since we can construct them directly from ordinary PRG. That is, we have the following
theorem:

Theorem 3. IF the PRG Axiom is true, then there exist pseudorandom functions.

Proving Theorem 3 The best way to think about the construction is the following. Suppose that
you have a PRG G : {0,1}" — {0,1}?". Construct a depth n full binary tree, which you label
as follows: the root is labeled with a string s (the seed of the function). For each non-leaf node

labeled v, the two children are labeled with Gg(v) £ G(v)[1..n) and Gi(v) £ G(V)nt1..2n)-

We have 2" leaves and we can identify each one of them with a string in {0, 1}" in the natural
way (the string depicts the path from the root to the leaf with 0 meaning take the left child
and 1 meaning take the right child). We define fs(z) to be the label of the leaf corresponding
to x.

Although the full tree is of exponential size to compute fs(x) we only need to follow an n-long
path from the root to the leaf and so it is computable in polynomial time.

Another way to state this definition is that fs(z) is defined to be

Analysis We now show the following result:

Lemma 4. If G : {0,1}" — {0,1}?" is a pseudorandom generator, then the construction
described above is a PRF' collection.

Proof. Suppose for the sake of contradiction that there is an 7T-time adversary Adv that man-
ages to distinguish between access to fs(-) and access to a random function with probability
at least e. We’ll convert it to a 7" adversary that manages to distinguish between G(U,,) and
Usy, with probability at least €, for 7" and € polynomially related to T e.

Without loss of generality. We’re going to make some modifications to the behavior of
Adv which will not change its distinguishing probability and not add too much to its running
time but will make our life a little easier. Since such modifications can be made, we can just
assume that Adv is already of the modified form. That is, we assume the following about
Adv:

e It makes exactly T' queries: if it makes less, we’ll change it to ask “meaningless” queries.

e It never asks the same question twice: we can modify Adv to keep track of all the
responses it received from its oracle and whenever it wants to get an answer for a query
it already asked, it can use that table.

We now consider the interaction of Adv with an oracle computing fs(-). The algorithm we
specified for f is a stateless algorithm that given s and x computes fs(x) without relying on
any precomputed information. However, we can implement the oracle in any way we want as
long as it still computes fs(-). Thus, we’ll implement it in the following way:

Description of the f,(-) oracle. The oracle will build keep the binary tree we described
above. Of course it cannot keep the entire tree, but it will build it and maintain it in response
to each query of Adv.

e Initially the tree contains only the root which is labeled with s.

e Whenever Adv makes a query for fs(z), the oracle will look at the path from the leaf
x to the root. Let v be the lowest point in the path which is already computed. The
oracle will compute all the values along the path from v to x and store the labels, finally
returning the label of z.

Note: Whenever the oracle invokes G on a label = of an internal (non-leaf) node v, it will
label the children of v with xyp = Go(z) and z; = Gi(z) and erase the label of v. Note that
this is OK since the oracle will never need to use these values again. Also note that the oracle
needs to make at most M = T - n invocations of G during the entire process.

The hybrids. We are going to use a hybrid argument to prove that the interaction of
Adv with this oracle is indistinguishable from an interaction with a random function. For
i=0,...,M we define the hybrid H* in the following way:

This is the adversary’s view in an interaction with the oracle except that for the first ¢ times
when the oracle is supposed to invoke G to label the two children of some node v labeled
x, the oracle does not do this but rather does a “fake invocation”: instead of labeling v’s
children with (zg,z1) = G(x) it chooses xp,z1 at random from {0,1}" and labels the two
children with g, z1, erasing the label of v.

Clearly H? is equal to the adversary’s view when interacting with f, while HM is equal to
the adversary’s view when interacting with a random function.

Thus, we only need to prove that H’ is indistinguishable from H*~!'. However, this follows
from the fact that G is a pseudorandom generator.

Proof of indistinguishability of H* and H*~'. We’ll make the following modification to the
operation of the oracle in H': in the first i “fake invocations” of G, when the oracle chooses
at random 1 and x5 and uses these to label the nodes of v, it will do something a bit different:
it will erase the label of v but use a “lazy” evaluation: it will mark the children of v as “to
be chosen at random” and will choose each of these labels at random only when it will be
needed at a future time. (Note that typically the label for one of the children will be needed
in the next step, but the label for the other child may only be required to answer a future
query or perhaps never). Even the root s is not chosen initially but rather is initiated with
the “to be chosen at random” label. Note that for the first ¢ “fake invocations” whenever the
value for an internal node is used then it is immediately deleted, and so in the first i steps all
the internal nodes are either untouched or marked “to be chosen at random”. The important
observation is that all this is only about the oracle’s internal computation and has no effect
on the view of the adversary. (Also, the oracle can stop being lazy and choose values for some
of the nodes without any effect on the view.)

We’ll now prove the indistinguishability. Suppose we had a distinguisher C' between H' and
Hi=!. Then, we’ll build a distinguisher C” for the G in the following way:

Input: y € {0,1}?" (y either comes from Uy, or from G(U,))

Operation: Run the oracle as usual. However when getting to the i*" “fake invocation”.
In this invocation it is supposed to take an internal node v which is marked “to be chosen
at random”, and choose a random value z for it. In the hybrid H*~! the oracle chooses
(o,71) = G(x) and uses that to label v’s children, then erasing x. In the hybrid H* the
oracle chooses zp and x; at random. Our distinguisher will simply let (zg,z1) = y and use
this as the labeling.

It is clear that if y ~ G(U,,) then we get H*™1 and if y ~ Us,, we get H’. Therefore the success
of ¢’ in distinguishing G(U,,) and Us,, equals the success of C' in distinguishing H*~! and H°.
Since C’ is only polynomially slower than C we’re done. O

O

See also Section 4.6 of Boneh-Shoup for this proof.

