
Lecture 4 - Computational Indistinguishability, Pseudorandom

Generators

Boaz Barak

September 27, 2007

Computational Indistinguishability Recall that we defined that statistical distance of two dis-
tributions X and Y over {0, 1}n is at most ε if∣∣Pr[A(X) = 1]− Pr[A(Y) = 1]

∣∣ ≤ ε (*)

for every A : {0, 1}n → {0, 1}.
We will say that X and Y are computationally indistinguishable if (*) holds for every
polynomial-time A and polynomially bounded ε. More formally, we need to use asymptotic
notation and so make the following definition:

Definition 1. Let {Xn}, {Yn} be sequences of distributions withXn, Yn ranging over {0, 1}`(n)

for some `(n) = nO(1). {Xn} and {Yn} are computationally indistinguishable (notation:
Xn ≈ Yn) if for every polynomial-time A and polynomially-bounded ε, and sufficiently large
n ∣∣Pr[A(Xn) = 1]− Pr[A(Yn) = 1]

∣∣ ≤ ε(n)

(If we want to nitpick, we’d give 1n as additional input to A to ensure it can run in poly(n)-
time even if `(n) is much smaller than n.)

We will often drop the subscript n when it’s clear from the context. So, we’ll say that two
distributions X and Y are computationally indistinguishable when we really mean that they
are part of two computationally indistinguishable sequences.

Some properties of computational indistinguishability: (Exercise)

• Obviously, if Xn ≈ Yn then Yn ≈ Xn (i.e., ≈ is symmetric).
• It’s weaker than statistical indistinguishability: if ∆(Xn, Yn) ≤ ε(n) for ε(n) = n−ω(1)

then Xn ≈ Yn. In particular, if Xn ≡ Yn then Xn ≈ Yn (i.e., ≈ is reflexive).
• It satisfies transitivity / triangle inequality: if Xn ≈ Yn and Yn ≈ Zn then Xn ≈ Zn

(i.e., ≈ is transitive and hence is an equivalence relation).
• If Xn ≈ Yn and f is a polynomial time computable function then f(Xn) ≈ f(Yn).
• If Xn ≈ Yn then for every m < n, the truncation of Xn to the first m bits is indistin-

guishable from the truncation of Yn to the first m bits.

Proof of transitivity condition The way is to simply express Pr[A(X) = 1]− Pr[A(Z) = 1] as
Pr[A(X) = 1] − Pr[A(Y) = 1] + Pr[A(Y) = 1] − Pr[A(Z) = 1], and then use the standard
triangle inequality |a+b| ≤ |a|+|b| to conclude that if both |Pr[A(X) = 1]−Pr[A(Y) = 1]| ≤ ε
and |Pr[A(Y) = 1]− Pr[A(Z) = 1]| ≤ ε, then |Pr[A(X) = 1]− Pr[A(Z) = 1]| ≤ 2ε.

1

Polynomial transitivity / hybrid argument We can generalize this proof to say that if we
have a polynomial number m of distributions X1, X2, . . . , Xm such that Xi ≈ Xi+1 for every
i, then X1 ≈ Xm: Simply express Pr[A(X1) = 1]− Pr[A(Xm) = 1] as

Pr[A(X1) = 1]−Pr[A(X2) = 1]+Pr[A(X2) = 1]−Pr[A(X3) = 1]+· · ·+Pr[A(Xm−1) = 1]−Pr[A(Xm) = 1]

and conclude using the triangle inequality (|
∑m

i=1 ai| ≤
∑m

i=1 |ai|) that if |Pr[A(Xi) = 1] −
Pr[A(Xi+1) = 1]| ≤ ε for every i, then |Pr[A(X1) = 1]− Pr[A(Xm) = 1]| ≤ mε.

Security def in these notation For example, recall that last time we made the following defi-
nition:

Definition Let (E,D) be an encryption scheme that uses n-bit keys to encrypt `(n)-length
messages. (E,D) is computationally secure if for every polynomial-time algorithmA : {0, 1}∗ →
{0, 1}, polynomially bounded ε : {0, 1}∗ → [0, 1], n, and x0, x1 ∈ {0, 1}`(n),∣∣Pr[A(EUn(x0)) = 1]− Pr[A(EUn(x1) = 1]

∣∣ < ε(n)

An equivalent way to say this is that (E,D) is computationally secure if EUn(x0) ≈ EUn(x1)
for every two messages x0, x1.1

Pseudorandomness We say that a distribution {Xn} is pseudorandom if it’s computationally
indistinguishable from the uniform distribution.

Definition 2. A polynomial-time-computable deterministic function G mapping n bit strings
into `(n) bit strings for `(n) ≥ n is called a pseudorandom generator if G(Un) ≈ U`(n). The
function `(n) is called the stretch of the pseudorandom generator.

It’s trivial to construct a pseudorandom generator with `(n) = n. Also, because of the trun-
cation property, a pseudorandom generator with stretch `(n) trivially yields a pseudoarndom
generator with stretch `′(n) for every `′(n) < `(n). We are now ready to state our axiom:

The PRG Axiom: There exists a pseudorandom generator with stretch `(n) = n+ 1.

Our main Theorem for today will be

Main Theorem: If the PRG Axiom is true then for every constant c, there exists a compu-
tationally secure encryption scheme with message length `(n) = nc.

It will follow from the following two theorems:

Theorem 1. If there exists a pseudorandom generator with stretch `(n) = n + 1 then for
every constant c, there exists a pseudorandom generator with stretch `(n) = nc.

Theorem 2. If there exists a pseudorandom generator with stretch `(n) then there exists a
computationally secure encryption scheme with message length `(n).

Proof of Theorem 2 There is a pretty natural construction of a private key encryption with key
length < message length using a pseudorandom generator.

Let G be the pseudorandom generator mapping n bit strings to `(n) bit strings.

1More formally we’d say that for every two sequences of messages {xn
0 } and {xn

1 }, where xn
0 , xn

1 ∈ {0, 1}`(n), the
two sequences {EUn(xn

0)} and {EUn(xn
1)} are computationally indistinguishable.

2

The encryption scheme will be the following: Ek(x) = x ⊕ G(k), Dk(y) = y ⊕ G(k). That is,
we use a pseudorandom pad instead of a random pad in the One-Time-Pad scheme. Intu-
itively this should be secure since using a pseudorandom string instead of random should be
good enough for all practical purposes. However, relying on intuition is very dangerous in
cryptography, and so we need to verify this with a proof. Fortunately, this time the intuition
holds:

Claim 2.1. For every message x, the distribution EUn(x) is pseudorandom.

The claim implies that for every pair of messages x0, x1, we have that EUn(x0) ≈ U`(n), and
U`(n) ≈ EUn(x1). Hence EUn(x0) ≈ EUn(x1).

Proof of claim. Assume, for the sake of contradiction, that there exists a polynomial-time A
such that ∣∣∣Pr[A(G(Un)⊕ x) = 1]− Pr[A(Um) = 1]

∣∣∣ ≥ ε (1)

(where m = `(n)).

We’ll construct an algorithm B : {0, 1}m → {0, 1} which will contradict the security of G.
We define B as follows: B(y) = A(y ⊕ x). Note that this means that A(z) = B(z ⊕ x). The
running time of B is the same as the running time of A, but (1) means that∣∣∣Pr[B(G(Un)) = 1]− Pr[B(Um ⊕ x) = 1]

∣∣∣ ≥ ε (2)

but since Um ⊕ x ≡ Um, (2) implies that B contradicts the fact that G is a pseudorandom
generator.

Proof of Theorem 1 Assume that we have a pseudornadom generator pmG mapping n bits to
n+ 1 bits. We’ll construct from it a pseudorandom generator G mapping n bits to `(n) bits
for every `(n) = nc. The running time of G will be roughly `(n) times the running time of
pmG.

The operation of G is as follows: (notation: for a string x ∈ {0, 1}k, and i < j ≤ k, x[i...j] is
xixi+1 · · ·xj)

Input: x ∈ {0, 1}n.

j ← 0
x(0) ← x
while j < `(n):

j ← j + 1
x(j) ← G′n(x(j−1)

[1...n])

output x
(j)
n+1

We define random variables Y (0), . . . , Y (m) over {0, 1}m. Intuitively, Y (i) will correspond
to running the pseudorandom generator from the ith iteration onwards, starting from the
uniform distribution Un+i. More formally, Y (i) is obtained by concatenating a random i bit
to the output of the following algorithm Gm−i on input x←R {0, 1}n:

Input: x ∈ {0, 1}n.

3

x
Gn Gn

Gn

x(1)

x
(1)
n+1

x(2)

x
(2)
n+1

xp(n)

x
p(n)
n+1

Output:

Figure 1: Extending output of pseudorandom genertator

j ← 0
x(0) ← x
while j < `(n):

y ← pmG(x(j−1))
x(j+1) ← y[1..n]

output yn+1

j ← j + 1

Note that Y (0) = G(Un) and Y (m) = Um. Therefore, the result will follow by showing that
Y (0) ≈ Y (m). By the transitivity of computational indistinguishability, it suffices to prove:

Claim 2.2. For every i ∈ [m], Y (i) ≈ Y (i+1)

Proof. Note that Y (i) = UiG
m−i(Un) and Y (i+1) = Ui+1G

m−i−1(Un). Both start with i
random bits and so it suffices to show that X = G(m−i)(Un) ≈ Y = U1G

(m−i−1)(Un). Define
f : {0, 1}n+1 → {0, 1}m−i as follows: f(y) = yn+1G

(m−i−1)(y[1..n]). Note that:

• X = f(pmG(Un)).
• Y = f(Un+1).

But since pmG(Un) ≈ Un+1, it follows that f(pmG(Un)) ≈ f(Un+1) for every polynomial-time
computable function f .

Note: This proof technique — proving that two distributions X and Y are indistinguishable
by presenting intermediate distributions X(0), . . . , X(m) with X(0) = X and X(m) = Y and
the showing that X(i) is indistinguishable from X(i+1) — is called the hybrid technique, and
is a very important technique in cryptographic proofs. I recommend that you also review this
proof in Section 6.4.2 of the Katz-Lindell book.

Candidates for pseudorandom generators: One justification to The PRG Axiom is that can-
didate functions that we conjecture to be pseudorandom generators (even if we can’t prove
it). Below are two such candidate functions. We’ll see more such candidates later on in the
course.

4

RC4 RC4 was invented by Ron Rivest for RSA. Its design is a trade secret and so the actual
algorithm is not supposed to be known (security by obscurity). Nevertheless the code was
obtained by reverse engineering and leaked to the cyberpunks mailing list. Even though RC4
is widely used including in the WEP and WPA protocols for wireless networks (IEEE 802.11)
and the SSL protocol, several weaknesses were found in it and so it can not be considered a
secure pseudorandom generator. (And so in fact it’s not a good candidate, however I present it
here since it is widely used and illustrates principles that are utilized in more secure candidates
for pseudorandom generators.)

A byte is a number from 0 to 255 (or equivalently, a string in {0, 1}8). The input to the
pseudorandom generator is a permutation S : Z256 → Z256 (i.e., a 256 long array S[] such
that S[i]6=S[j] for every i6=j). The output is m bytes (where we can control the value of m
to be as large as we want). The following is the pseudocode for RC4:

i := 0
j := 0
num_outputted = 0;
while num_outputted < m:

i := (i + 1) mod 256
j := (j + S[i]) mod 256
swap(S[i],S[j])
num_outputted := num_outputted + 1
output S[(S[i] + S[j]) mod 256]

We see that RC4 expands log(256!) bits which is roughly 8 · 256 = 2048 bits into an arbitrary
large m number of bits. However, in most current applications people desire an input much
smaller than 2048 and so there’s a separate pseudorandom generator (called the key scheduling
algorithm or KSA) that takes an input of size ` bits, for 40 ≤ ` ≤ 128, and outputs an
initial permutation S. The page http://www.wisdom.weizmann.ac.il/~itsik/RC4/rc4.
html (written by my friend Itsik Mantin) is a good source of information on RC4 and the
attacks on it.

Blum-Blum-Shub The Blum-Blum-Shub generator is even simpler than RC4 but it is much
less efficient. However it has the advantage that we can relate its security to a well known
problem. Assuming factoring a random n bit integer2 cannot be done in polynomial-time
with polynomially-bounded success probability, this pseudorandom generator will be secure.
The input is a number N (of length n bits) and X where 1 ≤ X < N .3 The output will be m
bits where again we can choose m to be as large as we want. The pseudocode is as follows:

num_outputted = 0;
while num_outputted < m:

X := X*X mod N
num_outputted := num_outputted + 1
output least-significant-bit(X)

2Random here means that we choose random primes p and q of length n/2 bits, where for technical reasons we
require that their remainder modulu 4 is 3, and let n = p · q.

3Actually X should satisfy gcd(X, N) = 1 but this will happen with overwhelmingly high probability for a random
X.

5

We’ll prove that a variant of this generator is as secure as factoring later in the course.

6

