
COS 433 — Cryptography — Homework 11 — last one! :).

Boaz Barak

Total of 180 points. Due April 30th, 2010.

Since it seems several people had issues with zero knowledge (which is indeed a tricky concept),
I decided to add another question on zero knowledge. Also, lectures 24 till 28 in Trevisan’s lecture
notes (http://www.cs.berkeley.edu/~luca/cs276/) are a good source for zero knowledge.

Exercise 1 (30 points). A somewhat counterintuitive aspect of zero knowledge is that the simu-
lator’s job is just to sample a random variable and so it can generate randomness for the verifier
in the process, which may seem “unfair”. The following question illustrates why this is the right
notion, by showing that the zero knowledge property implies that anything the verifier can learn
about the secret after the interaction, he could have learned on his own. (This can be viewed as
the mathematical formalization of Chazelle’s description of zero knowledge..)

Recall the zero knowledge protocol for quadratic residuosity we saw in class (Protocol QR in
notes for lecture 17).

1. Suppose that there is a cheating verifier V ∗ that satisfies the following property: if we choose
N = PQ as random Blum prime of 2n bits, choose W ←R Z∗N , and X = W 2 (mod N), then
after interacting with the prover for protocol QR on public input X,N and with prover’s
private input being W , V ∗ outputs the least significant bit of W with probability at least
0.99.

Prove that in this case there is a polynomial-time algorithm A that if X,N,W chosen as above
and A is given X,N as input, then A outputs the least significant bit of W with probability
at least 0.98.

2. Prove that the above holds not just for that particular protocol, but for any ε-computational
zero knowledge protocol (as per the definition given in class and also in homework 10).

Exercise 2 (30 points). Prove that if there exists a fully homomorphic CPA-secure private key en-
cryption scheme, then there exists a fully homomorphic CPA-secure public key encryption scheme.
(The definition we use is with the NAND algorithm, as in the lecture notes and homework 10.)

Exercise 3 (30 points). In this exercise you’ll prove the variant of the “leftover hash lemma” that
we needed for showing that rerandomization works. This lemma is useful in many other settings,
and so it’s worthwhile to know in general.

1. Let R ∈ N and let π : ZR → [0, 1] be a probability distribution over ZR, that is
∑

i π(i) = 1.
Let cp(π) denote the collision probability of π. That is, cp(π) = Pra,b∼π[a = b] =

∑
i π(i)2

(can you see why?). Prove that if cp(π) ≤ 1/R+ ε then the statistical distance of π from the
uniform distribution is at most 10

√
εR. See footnote for hint.1

1Hint: Write this statistical distance as
∑

i |π(i)− 1/R| and use the Cauchy-Schwarz inequality that
∑

i |ai||bi| ≤
√∑

i a
2
i

∑
j b

2
j .

1

2. Let b = b1, . . . , b10n and a = a1, . . . , a10n be two 10n-bit vectors that are not the same (there is
an i such that ai 6= bi). Prove that if R is prime and Q1, . . . , Q10n are chosen at random in ZR
then Pr[Q · a = Q · b] = 1/R, where Q denotes the vector Q1, . . . , Q10n and Q · a =

∑10n
i=1 aiQi

(mod R). See footnote for hint2

3. For a vector Q as above, let πQ denote the distribution over ZR obtained by choosing a
random set S ⊆ [10n] (by setting each i to be inside S with probability 1/2 independently)
and outputting

∑
i∈S Qi (mod R). Prove that the expectation of cp(πS)−1/R over the choice

of a random Q, is at most 2−5n.

4. Show the lemma stated in class: if Q is chosen at random as above, then with probability at
least 1− 2−n, the statistical distance of πQ and the uniform distribution over ZR is at most

2−n. This completes the proof of the rerandomization step we showed in class, since now
the distribution

∑
i∈S QiP (mod N) for a random subset S will be statistically close to the

distribution QP where Q is chosen uniformly over ZR.

Exercise 4 (30 points). In this exercise we use a slightly different definition of EE(b). We define
EE(b) = {X ∈ ZN : X = PQ+2E+b (mod N) and |2E+b| ≤ E}. Note that this is the same as we
defined in class up to a factor of 3 in the noise, and so none of the discussion in class is affected by
this. Define Add(Y1, . . . , Yk) =

∑
i Yi (mod N) and Mult(Y1, . . . , Yk) =

∏k
i=1 Yi (mod N). Prove

that if Yi ∈ EEi(ci) then Mult(Y1, ldots, Yk) ∈ EE1···Ek(c1c2 · · · ck) and Add(Y1, . . . , Yk) ∈ E
∑
iEi(c1⊕

· · · ⊕ ck).
Let C be a Boolean circuit, composed of multiplication and addition gates modulo 2, that

computes a function mapping GF(2)m to GF(2). Recall that we can think of C as a labeled directed
acyclic graph, with m sources corresponding to the inputs and also the constants 0 and 1, one
sink corresponding to the output, and the other vertices correspond to the gates, and are labeled
with either ⊕ or ×. We define the degree of an input or constant vertex to be 1, and define the
degree of other vertices inductively: let v be a vertex and suppose that we already defined the
degrees d1, . . . , dk of the vertices that have a edges to v. If v is labeled with × then we define the
degree of v to be d1 + · · · + dk, and if v is labeled with ⊕ then we define the degree of v to be
max{v1, . . . , vk}+ 1. The degree of the circuit is the maximum degree of all its vertices.

Let C be a circuit of degree at most d and size at most S. Suppose that we are given m
ciphertexts X1, . . . , Xm where Xi ∈ EE(bi), and we run the circuit C on these ciphertexts, by
changing each ⊕ gate to a call of Add and each × gates to a call of Mult. Prove that we get as
output X in EE′(b) where E′ ≤ (E + S)d and b = C(b1, . . . , bm). See footnote for hint3

Exercise 5 (30 points). Let f : GF(2)` → GF(2) be any function. Prove that f has a circuit of
degree at most 2` and size at most 23`. See footnote for hint.4

Exercise 6 (30 points). Let SUMi : {0, 1}m → {0, 1} be such that SUMi(a1, . . . , am) denote the
ith bit of the sum

∑
j aj . That is, one can write

∑
j aj =

∑
i 2iSUMi(a1, . . . , am). Give a circuit of

poly(m, 2i) size and degree at most 100(logm+ 2i) to compute SUMi. If you want, you can follow
the approach below (or you can use any other design).

1. Define
Sk(a1, . . . , am) =

∑
S⊂[m]
|S|=k

∏
j∈S

aj (mod 2)

2Hint: this is the same calculation we have done in the past when discussing pairwise independent hash functions.
3Hint: Sort the circuit topologically, and prove by induction.
4Hint: You can express f as the polynomial

∑
y∈GF(2)`

f(y)
∏`

i=1(1 + xi + yi) (mod 2).

2

Prove that SUMi(a1, . . . , am) = S2i(a1, . . . , am). See footnote for hint.5

2. Prove that Sk(a1, . . . , am) =
∑k

j=0 Sj(a1, . . . , am/2) · Sk−j(am/2+1, . . . , am).

3. Give a circuit of poly(m, 2i) size and degree at most 100(logm+ 2i) to compute the function
SUMi. (If it simplifies matters, you can assume m is a power of 2). See footnote for hint.6

By combining Exercises 4, 5 and 6, we can obtain the Clean procedure. The main goal there
was to add up m numbers that are of O(log k) size, at most k of them are non zero. The idea is to
follow the trivial gradeschool algorithm for addition. Recall that it starts by summing up the least
significant digit of all the numbers, where the functions SUM1, . . . , SUMlogk allow us to compute
the carry. We then sum up the second least significant digit of all the numbers and add the first
bit of carry from the first sum, and continue in this way. One can see that the ith digit of the sum
can always be computed with degree roughly 2i.

5Hint: use induction on m
6Hint: use dynamic programming and the recursion above.

3

