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Léon Bottou

NEC Labs America

COS 424 – 2/4/2010



Piecewise Polynomial (Splines)
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Piecewise quadratic

– Quadratic splines : Φ(x) = 1, x, x2, . . . max(0, x− rk)2 . . .
– Cubic splines : Φ(x) = 1, x, x2, x3, . . . max(0, x− rk)3 . . .
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The “training set/testing set” paradigm
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– One should only use the testing set once! Of course. . .

– The more we look at the testing set, the less convincing we are.

– Public benchmarks and their problems.
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Review: Probabilities

DISCRETE PROBABILITIES

Intro We have all been exposed to “informal probabilities”. However it is instructive to be more precise.
The goal today is to refresh our ability to reason with probabilities in simple cases. Also to explain why and
when things can get complicated, and where to find the solutions in case of need.

Discrete probability space Assume we deal with a phenomenon that involves randomness, for instance
it depends on k coin tosses. Let Ω be the set of all the possible sequence of coin tosses. Each ω ∈ Ω is then
a particular sequence of k heads or tails.

For now, we assume that Ω contains a finite number of elements. We make a discrete probability space by
defining for each ω ∈ Ω a measure m(ω) ∈ R+. For instance this can be a count of occurences.

Since Ω is finite we can define the elementary probabilities p(ω) ∆=
m(ω)∑

ω′∈Ωm(ω′)
.

Events A subset A ⊂ Ω is called an “event” and we define P(A) ∆=
∑
ω∈A p(ω)

Event language Set language
The event A occurs ω ∈ A
The event A does not occur ω /∈ A; ω ∈ Ac
Both A and B occur ω ∈ A ∩B
A or B occur ω ∈ A ∪B
Either A or B occur ω ∈ A ∪B and A ∩B = ∅

Essential properties P(Ω) = 1; A ∩B = ∅ =⇒ P(A ∪B) = P(A) + P(B).

Derived properties P(Ac) = 1− P(A); P(∅) = 0; P(A ∪B) = P(A) + P(B)− P(A ∩B).

Random variables A random variable X is a function of ω ∈ Ω taking values from some other set X .

That makes X a probability space as well: for B ⊂ X , PX (B) = P {X ∈ B} = P {ω : X(ω) ∈ B}.
We write X when we should write X(ω).
We write P {X < x} when we should write P {ω : X(ω) < x}.
Same for more complicated predicates involving one or more variables.

We write P(A,B) instead of P(A ∩B), as in P {X < x, Y = y} = P ({ω : X(ω) < x} ∩ {ω : Y (ω) = y}).
We sometimes write P(X) to represent the function x 7→ P(X = x).

Conditional probabilities Suppose we know event A occurs.

We can make A a probability space with the same measure: for each ω ∈ A, pA(ω) ∆=
m(ω)∑

ω′∈Am(ω′)
.

Then, for each B ⊂ Ω, we define P(B|A) ∆=
∑

ω∈B∩A
pA(ω) =

∑
ω∈B∩Am(ω)∑
ω∈Am(ω)

=
P(B ∩A)

P(A)
.

Notation: P(X|Y ) is a function x, y 7→ P(X = x|Y = y).
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Bayes optimal decision rule

Comparing class densities py(x) scaled by the class priors Py = P {Y = y}:
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Hatched area represents the Bayes optimal error rate.
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How to build a classifier from data

Given a finite set of training examples {(x1, y1), . . . , (xn, ym)} ?

• Estimating probabilities:

– Find a plausible probability distribution (next lecture).

– Compute or approximate the optimal Bayes classifier.

•Minimize empirical error:

– Choose a parametrized family of classification functions a priori.

– Pick one that minimize the observed error rate.

• Nearest neighbours:

– Determine class of x on the basis of the closest example(s).
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The Perceptron Mark 1 (1957)

The Perceptron is not an algorithm.

The Perceptron is a machine!
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Surrogate loss functions

Exp loss and Log loss

Exp loss:

`(z) = exp(−z)

Log loss:

`(z) = log(1 + exp(−z)) y y(x)^

Hinges

Perceptron loss:

`(z) = max(0,−z)

Hinge loss:

`(z) = max(0, 1− z) y y(x)^
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Receiver Operating Curve (ROC)

Changing the threshold

– Assigned class is sign(f (x)− b).
– True positives: F+(b) = P {f (x)− b > 0|Y = +1}
– False positives: F−(b) = P {f (x)− b > 0|Y = −1}
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Estimating Probabilities
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Estimating a density

Notes:

– The density is the derivative of the cumulative.
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A convenient shortcut

Assume we know the distribution up to a few parameters θ.

Discrete Continuous

Parametric form P {X = x} = fθ∗(x) p(x) = fθ∗(x)

Normalization
∑
x fθ(x) = 1

∫
p(x) dx = 1

Likelihood

– L(θ;x1 . . . xn)
∆
=

n∏
i=1

fθ(xi) i.e. the probability of x1 . . . xn

if fθ was the real distribution.

Maximum Likelihood Estimator (MLE)

– θ̂
∆
= arg max

θ
L(θ;x1 . . . xn) = arg max

θ

n∑
i=1

log fθ(xi)
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Comparing estimators

Estimate E [X ] given a sample x1, . . . , xn.

E [X] ≈
1

n

n∑
i=1

xi. E [X] ≈ 3 !

Jane believes in hard labor. Joe does not.

Is Jane’s answer always better than Joe’s ?
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Bayesian approach: no unknown probability.

Probabilities in classical statistics

– Probabilities P {. . . } represent the unknown.

“Unknown probability distribution P {X}”
“Discover something about P {X} using a sample”

“Regardless of the actual distribution. . . ”

– Likelihoods pθ(x) behave like probabilities but represent models.

Probabilities in Bayesian statistics

– Probabilities P {. . . } represent our beliefs.

– There are no unknown probabilities: we know what our beliefs are!

– The classical likelihood pθ(x) is similar to the Bayesian P {X | θ}.
– We can have beliefs P {θ} about θ.

Both are unfortunately represented with the same letter P.
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Putting things together

Lets use different letters:

– Q is the classical (unknown) probability,

– P is the Bayesian probability (or the classical likelihood.)

The MLE question: P {X | θ = arg max P {θ | D}} → Q{X}?
i.e. Is MLE consistent?

– With discrete probabilities: yes.

– With continuous probabilities: often.

The Bayesian question: P {X | D} → Q{X}?
i.e. Do the priors vanish when n increases?

– With discrete probabilities: yes.

– With continuous probabilities: more often than MLE.
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Numerical Optimization Techniques

Léon Bottou

NEC Labs America

COS 424 – 3/2/2010



Convex

Definition

∀ x, y, ∀ 0 ≤ λ ≤ 1,

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

Property

Any local minimum is a global minimum.

Conclusion

Optimization algorithms are easy to use.

They always return the same solution.

Example: Linear model with convex loss function.

– Curve fitting with mean squared error.

– Linear classification with log-loss or hinge loss.
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Coordinate Descent
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Perform successive line searches along the axes.

– Tends to zig-zag.
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Gradient Descent

Repeat w ← w − γ ∂f∂w(w)
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– Merge gradient and line search.

– Large gain increase zig-zag tendencies, possibly divergent.

– High curvature direction limits gain size.

– Low curvature direction limits speed of approach.
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Stochastic Gradient Descent

���������	
���

– Very noisy estimates of the gradient.

– Gain γt controls the size of the cloud.

– Decreasing gains γt = γ0(1 + λγ0t)
−1.

– Why is it attractive?

Léon Bottou 27/30 COS 424 – 3/2/2010



The wall

50

100

0.2

0.3

0.1 0.01 0.001 0.0001 1e−05 1e−07 1e−08 1e−09

Training time (secs)

Testing cost

1e−06

Optimization accuracy (trainingCost−optimalTrainingCost) 

SGD

TRON
(LibLinear)
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Clustering
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What is a cluster?
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Two neatly separated classes leave a trace in P {X}.
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Online K-Means

MacQueen’s algorithm

initialize centroids wk and nk = 0.

repeat

- pick an observation xt and determine cluster

st = arg min
k
‖xt − wk‖2.

- update centroid st:

nst ← nst + 1. wst ← wst +
1
nst

(
xt − wst

)
.

until satisfaction.

Comments

– MacQueen’s algorithm finds decent clusters much faster.

– Final convergence could be slow. Do we really care?

– Just perform one or two passes over the randomly shuffled observations.
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Expectation-Maximization
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When Maximum Likelihood fails

– Consider a mixture of two Gaussians

with trainable standard deviations.

– The likelihood becomes infinite when one

of them specializes on a single observation.

– MLE works for all discrete probabilistic models

and for some continuous probabilistic models.

– This simple Gaussian mixture model is not one of them.

– People just ignore the problem and get away with it.
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Expectation-Maximization
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E-Step: qik ←
λk√
|Σk|

e−
1
2 (xi−µk)>Σ−1

k (xi−µk)
remark: normalization!.

M-Step: µk ←
∑
i qik xi∑
i qik

Σk ←
∑
i qik(xi − µk)(xi − µk)>∑

i qik
λk ←

∑
i qik∑
iy qiy
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GMM for classification

1. Model P {X | Y = y} for every class with a GMM.

2. Calulate Bayes optimal decision boundary.

3. Possibility to detect outliers and ambiguous patterns.

���������

	
����

	
�����

���
����
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Conclusion

Expectation Maximization
– EM is a very useful algorithm for probabilistic models.
– EM is an alternative to sophisticated optimization
– EM is simpler to implement.

Probabilistic Models
– More versatile than direct approaches.
– More demanding than direct approaches (assumptions, data, etc.)
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Multilayer Networks
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An engineering perspective on the brain

The brain as a computer

– Compact

– Energy efficient (20 Watts)

– Amazingly good for perception

and informal reasoning.

Bill of materials

≈ 90%: support, energy, cooling.

≈ 10%: signalling wires.

A lot of wires in a small box

– Severe wiring constraints force a very specific architecture.

– Local connections (98%) vs. long distance connections (2%).

– Layered structure (at least in the visual system.)

– This is not a universal machine!

– But this machine defines what we belive is interesting!
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Back-propagation algorithm

Backward pass in the two layer network

– Set dL/dL = 1, compute gradients dL/dy and dL/dw for all boxes.
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Update weights

– For instance with a stochastic gradient update.

w ← w − γt
∂L

∂w
(x, y, w) .
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CNNs for image analysis

2D Convolutional Neural Networks

– 1989: isolated handwritten digit recognition

– 1991: face recognition, sonar image analysis

– 1993: vehicle recognition

– 1994: zip code recognition

– 1996: check reading

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10
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Optimisation for multilayer network

Landscape

– Ravine along w1 w2 = 1.

– Massive saddle point near the origin.

– Mountains in the quadrants w1 w2 < 0.

– Plateaux in the distance.

Tricks of the trade

– How to initialize the weights?

– How to avoid the great saddle point?

– etc.
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Descriptive and Exploratory Methods
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A catalog of descriptive methods

Clustering methods

– K-means, K-medioids, Gaussian mixtures. . .

– Hierarchical clustering. . .

Projection methods

– Principal component analysis (PCA) [Hotelling, 30s]

– Correspondence analysis (CA) [Benzecri, 60s]

– Multiple correspondence analysis (MCA)

– Canonical correlation analysis (CCA), . . .
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Embedding methods

– Kernel PCA

– Locally linear embbedding (LLE)

– ISOMAP
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Groups are often more interesting

Rhône-Alpes

Auvergne

– The barycenter of the six “Rhônes-Alpes” springs is close to the origin.

– The barycenter of the five “Auvergne” springs is high on the first axis.
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Hair and eye colors

We know for 592 english women

– the color of their eyes

– the color of their hair.
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Contingency table [xij]

xi• =

p∑
j=1

xij x•j =

n∑
i=1

xij x•• =

n∑
i=1

p∑
j=1

xij
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Simultaneous representation
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Semiometric plane (2,6)

D
u
ty

Humility

Sovereignty

P
le
a
su
re
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Generalization and Capacity Control
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Decomposition for the general case

Fr {µT − µL > ε} =

∑
L,S

1

Nsplits



0
...
0
1
0
...
0


×



1I {µT (m1)− µL(m1) > ε}
1I {µT (m2)− µL(m2) > ε}

...
0
1
...

1I {µT (mN )− µL(mN ) > ε}


– The sum runs over all the possible splits.

– The green vector indicates which error vector is produced by the

classifier returned by running learning algorithm on that split.

– The purple vector indicates which error vectors have

an error deviation greater than ε.
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The infinite case

Vapnik-Chervonenkis combinatorial lemma

Let mF(l) = max
{x1,c1...xl,cl}

N (F , {x1, c1 . . . xl, cl}).

– Either mF(l) = 2l for all l.

– Or mF(l) ≤
(
le
h

)h
where h is the last value such that mF(h) = 2h.

– Quantity h is called the Vapnik-Chervonenkis of the family F .

It measures the “capacity” of a family of functions.

(Vapnik and Chervonenkis, 1968) (Sauer, 1972)

Some people unfairly call this lemma “Sauer’s lemma”.
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What is a “structure”
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The structure defines a preorder on the functions.

All other things being equal:
– We’ll prefer a function from F1 over a function of F2.
– We’ll prefer a function from F2 over a function of F3.
– We’ll prefer a function from F3 over a function of F4.
– etc.

Very similar to a Bayesian prior!
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III. Learning algorithms in little pieces
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Support Vector Machines
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Primal and dual formulation

Karush-Kuhn-Tucker theory

– Refined theory for convex otimization under constraints.

– Construct a dual optimization problem

whose constraints are simpler,

and whose solution is related to the solution we seek.

Primal formulation Dual formulation

Max margin
between classes

Min distance
between convex hulls

A

B
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Support Vectors Machines

Min distance
between convex hulls

A

B

min
β

∑
ij

yiyj βiβj x>i xj subject to


∀i βi ≥ 0∑
i yiβi = 0∑
i βi = 2

The only non zero βi are those corresponding to support vectors.
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Quadratic Kernel

Quadratic basis

Φ(x) =
( [

xi
]
i ,
[
x2
i

]
i ,
[√

2 xixj
]
i<j

)
Dot product

Φ(x)>Φ(v) =
∑
i

xivi +
∑
i

x2
iv

2
i +

∑
i<j

2 xivixjvj

– Are there d(d+ 3)/2 terms to add ?
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Radial Basis (gamma = 1)
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Outlook

Success stories

– Text categorization

– Classification tasks in general

the best classifier can change a lot,

but the SVM is rarely far away.

Weak points

– Computationally costly with noisy data

– L2 regularization works poorly when irrelevant inputs abound.
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Information Theory, Statistics,

and Decision Trees
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Quantity of information

Optimal code length: li = − logr(pi).

Optimal expected code length:
∑

pi li = −
∑

pi logr(pi).

Receiving a message x with probability px:

– The acquired information is h(x) = −log2(px) bits.

– An informative message is a surprising message!

Expecting a message X with distribution p1 . . . pn:

– The expected information is H(X) = −
∑

x∈X px log2(px) bits.

– This is also called entropy.

These are two distinct definitions!

Note how we switched to logarithms in base two.

This is a multiplicative factor: log2(p) = logr(p) log2(r).

Choosing base 2 defines a unit of information: the bit.

Léon Bottou 14/31 COS 424 – 4/6/2010



Questions

Many questions can distinguish cars

– How many cylinders? (3,4,5,8)
– Displacement greater than 200 cu in? (yes, no)
– Displacement greater than x cu in? (yes, no)
– Weight greater than x lbs? (yes, no)
– Model name longer than x characters (yes, no)
– etc. . .

Which question brings the most information about the task?
– Build contingency table.
– Compare mutual informations I(Question,Mpg > 19).

Possible answers
ansA ansB ansC ansD

mpg>19 12 23 65 5
mpg≤19 18 12 4 4
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Decision trees
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· · ·

Then label each leaf with class MPG > 19 or MPG ≤ 19.

We can now say if a car does more than 19mpg by asking a few questions.

But that is learning by heart!
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Revisiting decision trees : likelihoods

The tree as a model of P (Y |X)

– Estimate P (Y |X) by the target frequencies in the leaf for X.

– We can compute the likelihood of the data in this model.

Likelihood gain when splitting a node

– Let xij be the contingency table for a node and a question.

– Splitting the node with a question increases the likelihood:

logLafter − logLbefore =
∑
ij

xij log
xij
x•j
−
∑
i

xi• log
xi•
x••

=
∑
ij

xij log
xij x••
x•• x•j

−
∑
i

xi• log
xi•
x••

=
∑
ij

xij log
xij
x••
−
∑
j

x•j log
x•j
x••
−
∑
i

xi• log
xi•
x••

Compare with slide 19.
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Ensembles
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Uncorrelated classifiers

Assume ∀r 6= s Cov [ 1I{hr(x) = y} , 1I{hs(x) = y} ] = 0

The tally of classifier votes follows a binomial distribution.

Example
Twenty-one uncorrelated classifiers with 30% error rate.
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Adaboost

Given examples (x1, y1) . . . (xn, yn) with yi = ±1.

Let D1(i) = 1/n for i = 1 . . . n.

For t = 1 . . . T do

• Run weak learner using examples with weights Dt.

• Get weak classifier ht
• Compute error: εt =

∑
iDt(i) 1I(ht(xi) 6= yi)

• Compute magic coefficient αt =
1

2
log

(
1− εt
εt

)
• Update weights Dt+1(i) =

Dt(i) e
−αt yi ht(xi)

Zt

Output the final classifier fT (x) = sign

 T∑
t=1

αtht(x)
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Boosting and exponential loss

Proofs are instructive

We obtain the bound

TrainingError(fT ) ≤ 1

n

∑
i

e−yiH(xi) =

T∏
t=1

Zt

– without saying how Dt relates to ht
– without using the value of αt

y y(x)^

Conclusion

– Round T chooses the hT and αT
that maximize the exponential loss reduction from fT−1 to fT .

Exercise

– Tweak Adaboost to minimize the log loss instead of the exp loss.
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Boosting and margins

marginH(x, y) =
y H(x)∑
t |αt|

=

∑
t αt y ht(x)∑

t |αt|

Remember support vector machines?
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Hidden Markov Models
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Spectrogram

”Laughter can soothe and heal.”
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Generative word model

Markov state machine

� �

���

Transition probabilities
– Markov assumption: st depends only on st−1.

– Invariance assumption: Pθ(st | st−1)
∆
= ast,st−1 does not depend on t.

Emission probabilities
– Independence assumption: xt depends only st (and sometimes st−1)

– Continuous HMM: Pθ(xt | st = s) is N (µs,Σs).

– Discrete HMM: Pθ(xt ∈ Xc | st = s)
∆
= bcs with Xc defined by clustering.
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The Ferguson problems

Likelihood

– Given a specific HMM,

compute the likelihood of an observation sequence.

=⇒ Forward algorithm

Decoding

– Given an observation sequence and an HMM,

discover the most probable hidden state sequence.

=⇒ Viterbi algorithm

Learning

– Given an observation sequence, learn the HMM parameters.

=⇒ Forward-Backward algorithm
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Factoring the likelihood (2bis)

Equivalent derivation:

αt(st) =
∑

s1...st−1

t∏
t′=1

ast′−1st′ Pθ(xt′ | st′)

=
∑
st−1

Pθ(xt|st) ast−1st

∑
s1...st−2

t−1∏
t′=1

ast′−1st′ Pθ(xt′ | st′)

=
∑
st−1

αt−1(st−1) ast−1st Pθ(xt|st)

We have only used the arithmetic relations: AB + AC = A(B + C)
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Decoding

Forward works because AB + AC = A(B + C).

But we also have max(AB,AC) = Amax(B,C) when A,B,C ≥ 0.

αt(i)
∆
=

∑
s1...st−1

t∏
t′=1

ast′−1st′ Pθ(xt′ | st′)

α?t (i)
∆
= max

s1...st−1

t∏
t′=1

ast′−1st′ Pθ(xt′ | st′)

Viterbi algorithm

α?o(i) = 1I{i = Start}

α?t (i) = max
j
α?t−1(j) aji Pθ(xt|st= i)

max
s1...sT

Pθ(s1 . . . sT , x1 . . . xT ) = max
i∈End

α?T (i)
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Simultaneous recognition and segmentation

Construct a super model
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Graphical representation

Independence assumptions

P (x1, x2, x3, x4) = P (x1)P (x2|x1)P (x3|x1, x2)P (x4|x1, x2, x3)

= P (x1)P (x2|x1)P (x3|x1)P (x4|x1, x2)

�� ��

��

��

Missing links represent independence assumptions
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Hidden Markov Models

P (x1 . . . xT , s1 . . . sT ) = P (s1)P (x1|s1)P (s2|s1)P (x2|s2) . . . P (sT |sT−1)P (xT |sT )

��

��

��

��

��

��

��

��

What is the relation between this graph and that graph?

� �

���
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D-separation

Problem

– Consider three disjoint sets of nodes: A, B, C.

– When do we have A ⊥⊥ B | C ?

Definition

A and B are d-separated by C if all paths from a ∈ A to b ∈ B
– contain a head-to-tail or tail-to-tail node c ∈ C, or

– contain a head-to-head node c such that neither c

nor any of its descendants belongs to C.

Theorem

A and B are d-separated by C ⇐⇒ A ⊥⊥ B | C
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Graphical representation

P (x1, x2, x3, x4, x5) =
1

Z
Ψ1(x1, x2) Ψ2(x2, x3) Ψ3(x3, x4, x5)

�� �� ��

��

��

��

��

��

– Completely connect the nodes belonging to each xC.

– Each subset xC forms a clique of the graph.
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Graph and Markov blanket

The Markov blanket of a MRF variable is the set of its neighbors.

P (x3 |x1, x2, x4, x5) = P (x3 |x2, x4, x5)

�� �� ��

��

��

��

��

��

Consequence
– Consider three disjoint sets of nodes: A, B, C.

A ⊥⊥ B | C ⇐⇒
{

Any path between a ∈ A and b ∈ B
passes through a node c ∈ C.

Conversely (Hammersley-Clifford theorem)
– Any distribution that satisfies such properties with respect to

an undirected graph is a Markov Random Field.
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Inference

Inference for learning

�� �� �

�������

����������

Inference for recognition

�

�������������

� �
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Gibbs sampling

A computationally intensive inference algorithm

�� �� �� ��

�� ��

��

�� Clamp the observed variables.

Randomly initialize the other variables.

Repeat:

– Pick one unobserved variable x.

– Compute P (x | ne(ne(x)) ).

– Pick a new value for x accordingly.

Observe the empirical distribution

of the variables of interest.
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Sum-product algorithm (2)

Recursions

�

��

����

�������� µΨs→x(x) =
∑

x1..xm..xM

Ψs(xs)
∏
m

µxm→Ψs(xm)

µΨs→x(x) = Ψs(x) if Ψs is a leaf.

��

�

��������

µx→Ψs(x) =
∏

l∈ne(x)\s
µΨl→x(x)

µx→Ψs(x) = 1 if x is a leaf.

– These recursion work because we assume the factor graph is a tree.

– Starting from the leafs, compute the messages µ everywhere.
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Interesting example

��

��

Correlated variables may be useless by themselves.
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L0L0L0 structural risk minimization

��������������	
��������

��������	���
	��
��

��

��

��
��

Let Er = min
f∈Sr

Etest(f ). The following result holds (Ng 1998):

Etest(f
?) ≤ min

r=1...d

Er + Õ

√ hr
ntrain

 + Õ

√r log d

ntrain

 +O

(√
log d

nvalid

)

Assume Er is quite good for a low number of features r.
Meaning that few features are relevant.

Then we can still find a good classifier if hr and log d are reasonable.
We can filter an exponential number of irrelevant features.
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L1L1L1 regularisation

The L1 norm is the first convex Lp norm.

min
w

1

n

n∑
i=1

`(y, fw(x)) + λ|w|1

Same logarithmic property

(Tsybakov 2006).

L1 regulatization can weed an

exponential number of irrelevant

features.

See also “compressed sensing”.
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L2L2L2 regularisation

The L2 norm is the same as the maximum margin idea.

min
w

1

n

n∑
i=1

`(y, fw(x)) + λ‖w‖2

Logarithmic property is lost.

Rotationally invariant regularizer!

SVMs do not have magic properties

for filtering out irrelevant features.

They perform best when dealing

with lots of relevant features.
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Feature learning in one slide

Suppose we have weight on a feature X.

Suppose we prefer a closely related feature X + ε.

��������	
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Natural language processing

and weak supervision
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SGD in Real Life: Sentence Analysis

Words embedded
in 50−100 dim space

Binary encoded
sentence words.

Trash

Five Time−Delay 
Multilayer networks :

Positional 
information relative to 
the chosen predicate for 
semantic tagging

Named Entity Recognition
( treebank, Stanford NER )

Chunking
( treebank )

Semantic Role Labeling
( propbank )

Part Of Speech Tagging
( treebank, split 02−21 / 23 ) State of the art: 2.75%

ERR: 2.76%   

State of the art: 89.31%

State of the art: 94.4%.
F1: 92.7%  ( 94.9% w/pos )   

F1: 88.97%  

Language Model
( wikipedia, 620M examples )

WER: ~14%   
State of the art: ~13%

– (Collobert and Weston, 2007, 2008) [not my work]

– No hand-tuned parsing tricks.

– No hand-tuned linguistic features.

– State-of-the-art accuracies.

– Analyzes a sentence in 50 milliseconds (instead of seconds.)

– Trains with SGD in about 3 weeks.


