LINEAR ALGEBRA REVIEW FOR $\cos 424$

RECTANGULAR MATRICES

Let $\mathbf{A} = [a_{ij}]_{\substack{i=1...m \\ j=1...n}}$ be a matrix with *m* lines and *n* columns.

Transposition: $\mathbf{B} = \mathbf{A}^{\top} \iff \forall i = 1 \dots n \quad \forall j = 1 \dots m \quad b_{ij} = a_{ji}.$

•
$$(\mathbf{A}^{\top})^{\top} = \mathbf{A}$$
, $(\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top}$, $(\lambda \mathbf{A})^{\top} = \lambda \mathbf{A}^{\top}$, $(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$.

Kernel (nullspace): $\mathcal{K}er(\mathbf{A}) \stackrel{\Delta}{=} \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{0}\}.$

Image (column space): $\mathcal{I}m(\mathbf{A})$: the vectorial space spanned by the columns of \mathbf{A} .

• $\dim(\mathcal{I}m(\mathbf{A})) + \dim(\mathcal{K}er(\mathbf{A})) = n$. — Hint: consider a basis of \mathbb{R}^n whose first elements span $\mathcal{K}er(\mathbf{A})$.

Rank: rank(\mathbf{A}) $\stackrel{\Delta}{=} \dim(\mathcal{I}m(\mathbf{A})).$

- rank(\mathbf{A}) $\leq \min(m, n)$. Proof: the *n* columns are elements of \mathbb{R}^m .
- $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top})$. Hint: first show that $\operatorname{rank}(\mathbf{A}^{\top}) \leq \operatorname{rank}(\mathbf{A})$.

Orthogonal matrix: A is orthogonal $\iff \mathbf{A}^{\top}\mathbf{A} = \mathbf{I}$.

- Equivalent statement: the columns of **A** are orthogonal unit vectors.
- A is orthogonal \implies rank $(\mathbf{A}) = n \implies n \le m$.
- The columns of a square *orthogonal matrix* form an *orthonormal basis*.

QR decomposition: $\mathbf{A} = \mathbf{QR}$ with \mathbf{Q} : $m \times r$, orthogonal, and \mathbf{R} : $r \times n$, upper triangular, $r = \operatorname{rank}(\mathbf{A})$.

- Gram-Schmidt orthogonalization algorithm:
 - let \mathbf{u}_i be the columns of \mathbf{A} , \mathbf{v}_k be the columns of \mathbf{Q} , r_{ki} the coefficients of \mathbf{R} .
 - $k \leftarrow 0$; for $i = 1 \dots n$: for $j = 1 \dots k$: $r_{ij} = \mathbf{u}_i \mathbf{v}_j$; endfor; $\mathbf{x} \leftarrow \mathbf{u}_i \sum_{j=1}^k r_{ki} \mathbf{v}_k$; if $\mathbf{x} \neq \mathbf{0}$: $k \leftarrow k+1$; $r_{ik} = \|\mathbf{x}\|$; $\mathbf{v}_k = r_{ik}^{-1}\mathbf{x}$; endif; endfor.

SQUARE MATRICES

Let $\mathbf{A} = [a_{ij}]_{\substack{i=1...n \ j=1...n}}$ be a matrix with *n* lines and *n* columns.

Invertible matrix: A is invertible \iff rank(A) = n

• $\mathbf{A} \mathbf{A}^{-1} = \mathbf{I}$ and $\mathbf{A}^{-1} \mathbf{A} = \mathbf{I}$.

Triangular matrix: All coefficients below (or above) the diagonal are null.

- A is upper triangular $\iff \forall j < i, a_{ij} = 0.$
- A is lower triangular $\Leftrightarrow \forall i < j, a_{ij} = 0.$

Determinant:

Let S_n is the set of the n! permutations of $\{1 \dots n\}$.

Let $\mathcal{N}(\sigma)$ be the number of pairs of indices misordered pairs by permutation $\sigma \in S_n$.

Then det(**A**)
$$\triangleq \sum_{\sigma \in S_n} (-1)^{\mathcal{N}(\sigma)} \prod_{i=1} a_{i,\sigma(i)}$$

- $det(\mathbf{I}) = 1$.
- $det(\mathbf{A}) = 0 \iff \mathbf{A}$ is not invertible.

- $\det(\mathbf{A}) = \det(\mathbf{A}^{\top}).$
- $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B}).$
- $|\det(\mathbf{A})|$ is proportional to the volume of the convex hull formed by the origin and the columns of \mathbf{A} .
- A orthogonal $\implies \det(\mathbf{A}) = \pm 1.$
- A triangular $\implies \det(\mathbf{A}) = \prod_{i=1}^{n} a_{ii}.$

Eigenspectrum: $\mathbf{x} \neq \mathbf{0}$ is an eigenvector of \mathbf{A} for eigenvalue $\lambda \iff \mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

- spectrum(**A**) is the set of eigenvalues of **A**.
- If $A \lambda \mathbf{I}$ is invertible, $\lambda \notin \text{spectrum}(\mathbf{A})$. Hint: then $\mathbf{A} = \lambda \mathbf{x}$ has only one solution: $\mathbf{x} = \mathbf{0}$.
- The eigenvalues of **A** are the roots of the *characteristic polynomial* $P(\lambda) = \det(A \lambda \mathbf{I})$.

Trace: trace(**A**) $\stackrel{\Delta}{=} \sum_{i=1}^{n} a_{ii}$.

• trace(AB) = trace(BA). — Proof: calculus.

SYMMETRIC MATRICES: $A^{\top} = A$

Spectral theorem: There is an orthogonal matrix \mathbf{Q} and a diagonal matrix \mathbf{D} such that $\mathbf{A} = \mathbf{Q}^{\top} \mathbf{D} \mathbf{Q}$. — Hint: study the complex roots of the characteristic polynomial (tricky.)

- The columns of **Q** are eigenvectors.
- The diagonal matrix **D** contains the corresponding eigenvalues.
- Positive definite symmetric matrix $\Leftrightarrow \forall \mathbf{x} \neq \mathbf{0}, \, \mathbf{x}^{\top} A \, \mathbf{x} > 0.$
 - All eigenvalues are > 0.
 - Equation $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 1$ defines an ellipsoid whose principal axes are the eigenvectors.
 - The Cholevsky decomposition algorithm computes a lower triangular matrix U such that $\mathbf{A} = \mathbf{U} \mathbf{U}^{\top}$.
 - Weaker variant: Positive symmetric matrix \Leftrightarrow^{Δ} all eigenvalues are ≥ 0 .

NUMERICALLY SOLVING Ax = b

Avoid

- Cramer formulas involving ratios of determinants.
- Algorithms to compute the inverse of a matrix.

When A is a triangular matrix: back-substitution

- Solve the equation with a single unknown
- Substitute into the remaining equations and repeat.
- Warning: when A is not invertible, aim for the equation with the least unknowns.

When A is an orthogonal matric: transpose

• You already know the inverse: $\mathbf{x} = \mathbf{A}^{\top} \mathbf{A} \mathbf{x} = \mathbf{A}^{\top} \mathbf{b}$.

General case: use a decomposition algorithm.

- *QR* decomposition: $\mathbf{A} = \mathbf{QR}$ with \mathbf{Q} orthogonal and \mathbf{R} upper triangular; solve $\mathbf{Rx} = \mathbf{Q}^{\top}\mathbf{b}$ with one round of back-substitution. Warning: when QR tells you that rank $(\mathbf{A}) < n$, verify the solution! Understanding the QR decomposition is sufficient for most purposes.
- Cholevsky decomposition is faster when **A** is positive definite symmetric.
- See Trefethen and Bau for: Column pivoting, LU decomposition, and SVD.

REFERENCE

• Lloyd N. Trefethen and David Bau, III: Numerical Linear Algebra. SIAM, 1997.