DRAFT — a final version will be posted shortly

COS 424: Interacting with Data

Lecturer: Léon Bottou Lecture #9
Scribe: Rob Harrison 3.11.2010
1 The Story

In slide 4, we motivate the discussion of neural networks by looking to the work by Nor-
ber Wiener in 1948. At the time, communications technologies and signal processing had
become very mature while computing was still in a very nascent stage. Wiener drew a con-
nection between the feedback loops that were seen in signal processing to the human brain,
social processes, and information processes in general. Wiener’s work motivated further
study on what a computer should be.

In slides 5-6, we look at the two options for moving forward with a model for compu-
tation: the biological and the mathematical. The biological paradigm had some obvious
engineering advantages, but the mathematical model offered far more guidance on how to
move forward. Despite the obvious advantages of the mathematical approach, efforts to
achieve computation by artificial neurons were still attempted. Slide 7 depicts an artificial
neuron as a linear threshold unit (LTU). These early efforts have an obvious connection
to neural networks by modeling a function with a vector z of inputs, weights w, and a
threshold. In slide 8, we are presented with the NeoCognitron which was a circuit of LTUs
that took advantage of symmetries and invariance of translation (throughout the field of
vision) to do complicated tasks, but the question arose of how to effectively train such deep
circuits.

Slide 9 finally kills the idea of using deep circuits of linear threshold elements to perform
general computation. Problems easily solved by a general purpose computer required ex-
ceedingly deep circuits of LTUs and training these deep circuits seemed hopeless. Training
in a discrete space resulted in combinatorial explosion, but this wasn’t obvious at the time
because complexity theory was also very immature. Although one can draw a network of
LTUs that can represent anything, the difficulty is the combinatorial search involved in find-
ing a small network of LTUs that achieves the desired task. This difficulty is also present
(and even greater) when one searches a compact set of logical rules for the desired task.
However, if we replace the hard threshold of LTUs with a sigmoid function, we now have
a soft threshold by way of a continuous approximation. Such an approximation does not
completely solve the problem, but it is sufficient for our purposes and allows us to leverage
the gradient to perform any optimization we like.

2 Mechanics of Multi-Layer Networks

Slide 12 begins the discussion of modern multilayer networks. Consider a single generic brick
akin to a lego. The brick is a modular version of a single layer neural network: a function
fuw(x) that takes a vector x of inputs, a parameter vector w of weights and produces output
vector y. We can calculate some loss function based on the output of the module. We can
combine these modules in any fashion we like. Slide 12 depicts a simple two layer network.

In some representations of neural networks, the non-linearity represented by the sigmoid
(or other functions) can be called an activation function. Some texts will also combine the
application of this activation function with the linear combination of the weights as a single



layer. Note in our abstraction, we separate the application of the non-linearity from the
linear combination of the weights because you do not always want both at the same time.
This is largely a matter of convention and back-propagation will still work either way.

3 Back Propagation

After composing arbitrary sequences of bricks, we can use back-propagation to train the
weights of the network. In order to do back-propagation, we need bricks for which we can

calculate the derivative of the loss with respect to the parameters (2—5) and the derivative

of the loss with respect to the inputs (%) We conduct back propagation in two passes,
forward and backward. Slide 13 demonstrates the back-propagation algorithm in a two-layer
network while slide 14 lists several different functions we could use in our generic brick as
well as the equations for the forward and backward passes.

In the forward pass, we send the inputs through each brick in the network and send the
outputs of each preceding brick as the input to the succeeding brick. On the final output,
we calculate some resulting loss. In the backward pass, we compute the gradient of an
individual brick and compute the stochastic gradient update to w at each brick. Because
we ensured that each brick was differentiable, we know that this method will succeed.

In the stochastic update relation, ¢ is the gain or learning rate in our optimization
(covered on Slides 21 and 27 of Optimization lecture). Too large a gain can cause divergence.
See Figure 1 below for more explanation. In this example below, 7 is the equivalent of
gamma.

4 Applications

Slide 15 presents several arbitrary combiations of modules demonstrating the flexibility of
this abstraction for different applications. Slide 16 introduces convolutional networks (CNN)
which are merely compositions of several modules that share a single matrix of weights W
such that translational invariance is preserved. Slides 17-22 demonstrate the effectiveness
of CNN applied to image processing. It is worth nothing that the code for facial recognition
is 95% the same as the code for character recognition.

5 Optimization in Multi-Layer Networks: Challenges and
Tricks

Slides 24-25 point out that the reason neural networks aren’t more prevalent is because
optimization can be difficult and may take a long time. In the graph on slide 25, one sees
that there are several regions that are troublesome (listed next to the graph) and this graph
is replicated symmetrically in each quadrant. The point is that if you choose your initial
weights unwisely, your model may not converge to a solution.

On slide 26, we point out that if you pick small initial weights, then the linear portion
of all the sigmoid curves will be exercised. As training progresses the weights will increase
and the non-linearities of the function will slowly become more evident. In training such
networks, one should continue to monitor both the training error and the validation error.
When the validation error curve stops improving, then you should cease training.



A LITTLE THEORY

radient Descent in oghe dimension

E‘\ gradient of
W—0—N T(D objective function

L\

weight vector learning rate
\\ w m
n<n opt n= T]opt

P

N>MNept ﬂ>2ﬂopt=

Figure 1: Effects of learning rate or gain on convergence.



