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Agenda

Goals Classification, clustering, regression, other.

Representation

Parametric vs. kernels vs. nonparametric

Probabilistic vs. nonprobabilistic

Linear vs. nonlinear

Deep vs. shallow

Capacity Control

Explicit: architecture, feature selection

Explicit: regularization, priors

Implicit: approximate optimization

Implicit: bayesian averaging, ensembles

Operational

Considerations

Loss functions

Budget constraints

Online vs. offline

Computational

Considerations

Exact algorithms for small datasets.

Stochastic algorithms for big datasets.

Parallel algorithms.
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Summary

1. Brains and machines.

2. Multilayer networks.

3. Modular back-propagation.

4. Examples

5. Tricks
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Cybernetics

Mature communication technologies: telegraph, telephone, radio, . . .

Nascent computing technologies: Eniac (1946)

Norber Wiener (1948)

Cybernetics or Control and Communication

in the Animal and the Machine.

Redefining of the man–machine boundary.
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What should a computer be?

A universal machine to process information.
– which structure? what building blocks?
– which model to emulate?

Biological computer Mathematical computer

Mathematical logic offers a lot more guidance.
→ Turing machines.
→ Von Neumann architecture.
→ Software and hardware.
→ Today’s computer science.
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An engineering perspective on the brain

The brain as a computer

– Compact

– Energy efficient (20 Watts)

– Amazingly good for perception

and informal reasoning.

Bill of materials

≈ 90%: support, energy, cooling.

≈ 10%: signalling wires.

A lot of wires in a small box

– Severe wiring constraints force a very specific architecture.

– Local connections (98%) vs. long distance connections (2%).

– Layered structure (at least in the visual system.)

– This is not a universal machine!

– But this machine defines what we belive is interesting!
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Computing with artificial neurons?

Retina
Associative area

x

w’ x

(w’ x)sign

Treshold element

McCulloch and Pitts (1943)

– Neurons as linear threshold units.

Perceptron (1957)

Adaline (1961)

– Training linear threshold units.

– A viable computing primitive?

⇐ People really tried things!

– Madaline, NeoCognitron.

– But how to train them?
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Computing with artificial neurons?

Circuits of linear threshold units?
– You can do complicated things that actually work. . .
– But how to train them?

Fukushima’s NeoCognitron (1980)
– Leveraging symmetries and invariances.
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Minsky and Papert “Perceptrons” (1969)

Cicuits of logic gates

– Linear threshold unit ≈ logic gate.

– Computers ≈ lots of logic gates.

– Which functions require what kind of circuit?

Counter-examples

– Easily solvable on a general purpose computer.

– Demand deep circuits to solve effectively.

– Perceptron can train a single logic gate!

– Training deep circuits seem hopeless.

In the background

– Universal computers need a universal representation of knowledge.

– Mathematical logic is offering first order logic.

– First order logic can represent a lot more than perceptrons.

– This is absolutely correct.
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Choose your Evil

Training first order logic

Training deep circuits of logic gates

– Symbolic domains, discrete space,

– Combinatorial explosion,

– Non Polynomial

Continuous approximations

– Replace the threshold by a sigmoid function.

– Continuous and differentiable.

– Usually nonconvex.

Circuits of linear units −→ Multilayer networks (1985)
First order logic −→ Markov Logic networks (2010)

Human logic −→ ?
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Multilayer networks, 1980s style

“ANN accurately predicts the effectiveness of the Micro-Compact
Heat Exchanger and compares well with those obtained from the
finite element simulation. [. . . ] computational effort has been
minimized and simulation time has been drastically reduced.”
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Multilayer networks, modularized

The generic brick
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Forward pass in a two layer network

– Present example x, compute output f (x), compute loss L(x, y, w).
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Back-propagation algorithm

Backward pass in the two layer network

– Set dL/dL = 1, compute gradients dL/dy and dL/dw for all boxes.
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Update weights

– For instance with a stochastic gradient update.

w ← w − γt
∂L

∂w
(x, y, w) .
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Modules

Build representations with any piece you need.

Module Symbol Forward Backward Gradient

Linear Wx y = Wx x̌ = W>y̌ w̌ = y̌ x>

Euclidian (x-w)2 yk = (x− wk)2 x̌ = 2(x− wk)y̌k w̌k = 2(wk − x)y̌k

Sigmoid sigmoid yi = σ(xi) x̌i = σ′(xi)y̌i

MSE loss MSE L = (x− y)2 x̌ = 2(x− y)Ľ

Perceptron loss Perceptron L = max{0,−yx} x̌ = −1I(yx ≤ 0)Ľ

Log loss LogLoss L = log(1 + e−yx) x̌ = −(1 + eyx)−1Ľ

· · ·
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Combine modules
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Composite modules

Convolutional module

– many linear modules with shared parameters.

Remember the NeoCognitron?
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CNNs for signal processing

Time-Delay Neural Networks

– 1990: speaker-independent phoneme recognition

– 1991: speaker-independent word recognition

– 1992: continuous speech recognition.
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CNNs for image analysis

2D Convolutional Neural Networks

– 1989: isolated handwritten digit recognition

– 1991: face recognition, sonar image analysis

– 1993: vehicle recognition

– 1994: zip code recognition

– 1996: check reading

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10
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CNNs for character recognition

3

4 4 4

4

34

8

3

C1 S2 C3 S4 C5

F6

Output
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CNNs for face recognition

Note: same code as the digit recognizer.
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Combining CNNs and HMM

Constrained
Interpretation Graph

Interpretation Graph

Path Selector

Forward  Scorer

Forward Scorer

Edforw

Cforw

Cdforw
+ −

Gc

Gint

Desired
Sequence

SDNN
Transformer

Compose
Character
Model
Transducer

S....c.....r......i....p....t
s....e.....n.....e.j...o.T
5......a...i...u......p.....f

SDNN Output

2 33 4 5

2345

C1 C3 C5

F6

Input

SDNN
Output

Compose + Viterbi

Answer
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Combining CNNs and HMM

6 777 88

678

3 55 114

3514

1 1 1 441

1114

55 4 0

540

Input

F6

SDNN
output

Answer
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Combining CNNs and FSTs

Segmentation Graph

Interpretation Graph

Grammar

Recognition Graph

Field Graph

Check Graph

Best Amount Graph

Compose

2nd Nat. Bank

$ *** 3.45

three dollars and 45/xx

not to exceed $10,000.00

$ *** 3.45

$10,000.00
45/xx

$ * 3

** 45

"$" 0.2
"*" 0.4
"3" 0.1
"B" 23.6
.......

"$" 0.2
"*" 0.4
"3" 0.1
.......

Recognition
Transformer

Segmentation Transf.

Field Location Transf.

Viterbi Answer

Viterbi Transformer

Check reading involves

– locating the fields.

– segmenting the characters.

– recognizing the characters.

– making sense of the string.

Global training

– integrate all these modules

into a single trainable system.

Deployment

– deployed in 1996-1997

– was still in use in 2007.

– processing ≈ 15% of the US checks.
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Optimisation for multilayer network

The simplest multilayer network

– Two weights w1, w2

– One example {(1, 1)}
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Optimisation for multilayer network

Landscape

– Ravine along w1 w2 = 1.

– Massive saddle point near the origin.

– Mountains in the quadrants w1 w2 < 0.

– Plateaux in the distance.

Tricks of the trade

– How to initialize the weights?

– How to avoid the great saddle point?

– etc.
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Capacity control through optimization

Idea

– Initialize weights with quite small values (but not too small!)

You are exercising the linear part of the sigmoid

The whole network therefore implements a linear function.

– When learning progresses, weights increase.

The function slowly becomes more and more nonlinear.

Early stopping

– Monitor both the training and validation errors during training.

– The training error illustrates the optimisation process.

– Stop training when the validation error stops improving.
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