Multilayer Networks

Léon Bottou

COS 424 - 3/11/2010

Agenda

Goals	Classification, clustering, regression, other.			
Representation	Parametric vs. kernels vs. nonparametric Probabilistic vs. nonprobabilistic Linear vs. nonlinear Deep vs. shallow			
Capacity Control	Explicit: architecture, feature selection Explicit: regularization, priors Implicit: approximate optimization Implicit: bayesian averaging, ensembles			
Operational Considerations	Loss functions Budget constraints Online vs. offline			
Computational Considerations	Exact algorithms for small datasets. Stochastic algorithms for big datasets. Parallel algorithms.			

Summary

- 1. Brains and machines.
- 2. Multilayer networks.
- 3. Modular back-propagation.
- 4. Examples
- 5. Tricks

Cybernetics

Mature communication technologies: telegraph, telephone, radio, . . . Nascent computing technologies: Eniac (1946)

Norber Wiener (1948)

Cybernetics or Control and Communication in the Animal and the Machine.

Redefining of the man-machine boundary.

What should a computer be?

A universal machine to process information.

- which structure? what building blocks?
- which model to emulate?

Biological computer

Mathematical computer

Mathematical logic offers a lot more guidance.

- \rightarrow Turing machines.
- → Von Neumann architecture.
- → Software and hardware.
- → Today's computer science.

An engineering perspective on the brain

The brain as a computer

- Compact
- Energy efficient (20 Watts)
- Amazingly good for perception and informal reasoning.

Bill of materials

 \approx 90%: support, energy, cooling.

 \approx 10%: signalling wires.

A lot of wires in a small box

- Severe wiring constraints force a very specific architecture.
- Local connections (98%) vs. long distance connections (2%).
- Layered structure (at least in the visual system.)
- This is not a universal machine!
- But this machine defines what we belive is interesting!

Computing with artificial neurons?

McCulloch and Pitts (1943)

Neurons as linear threshold units.

Perceptron (1957) Adaline (1961)

- Training linear threshold units.
- A viable computing primitive?
- ← People really tried things!
- Madaline, NeoCognitron.
- But how to train them?

Computing with artificial neurons?

Circuits of linear threshold units?

- You can do complicated things that actually work...
- But how to train them?

Fukushima's NeoCognitron (1980)

Leveraging symmetries and invariances.

Minsky and Papert "Perceptrons" (1969)

Cicuits of logic gates

- Linear threshold unit \approx logic gate.
- Computers \approx lots of logic gates.
- Which functions require what kind of circuit?

Counter-examples

- Easily solvable on a general purpose computer.
- Demand deep circuits to solve effectively.
- Perceptron can train a single logic gate!
- Training deep circuits seem hopeless.

In the background

- Universal computers need a universal representation of knowledge.
- Mathematical logic is offering first order logic.
- First order logic can represent a lot more than perceptrons.
- This is absolutely correct.

Choose your Evil

Training first order logic Training deep circuits of logic gates

- Symbolic domains, discrete space,
- Combinatorial explosion,
- Non Polynomial

Continuous approximations

- Replace the threshold by a sigmoid function.
- Continuous and differentiable.
- Usually nonconvex.


```
Circuits of linear units \longrightarrow Multilayer networks (1985)
First order logic \longrightarrow Markov Logic networks (2010)
Human logic \longrightarrow ?
```

Multilayer networks, 1980s style

"ANN accurately predicts the effectiveness of the Micro-Compact Heat Exchanger and compares well with those obtained from the finite element simulation. [...] computational effort has been minimized and simulation time has been drastically reduced."

Multilayer networks, modularized

The generic brick

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial y} \times \frac{\partial y}{\partial w}$$

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \times \frac{\partial y}{\partial x}$$

Forward pass in a two layer network

- Present example x, compute output f(x), compute loss L(x, y, w).

Back-propagation algorithm

Backward pass in the two layer network

- Set dL/dL = 1, compute gradients dL/dy and dL/dw for all boxes.

Update weights

For instance with a stochastic gradient update.

$$w \leftarrow w - \gamma_t \frac{\partial L}{\partial w}(x, y, w)$$
.

Modules

Build representations with any piece you need.

Module	Symbol	Forward	Backward	Gradient
Linear	Wx	y = Wx	$\check{x} = W^{\top} \check{y}$	$\check{w} = \check{y} \; x^{\top}$
Euclidian	$(x-w)^2$	$y_k = (x - w_k)^2$	$\check{x} = 2(x - w_k)\check{y}_k$	$\check{w}_k = 2(w_k - x)\check{y}_k$
Sigmoid	sigmoid	$y_i = \sigma(x_i)$	$\check{x}_i = \sigma'(x_i)\check{y}_i$	
MSE loss	MSE	$L = (x - y)^2$	$\check{x} = 2(x - y)\check{L}$	
Perceptron loss	Perceptron	$L = \max\{0, -yx\}$	$\check{x} = -\mathbb{I}(yx \le 0)\check{L}$	
Log loss	LogLoss	$L = \log(1 + e^{-yx})$	$\dot{x} = -(1 + e^{yx})^{-1}\dot{L}$	
• • •				

Léon Bottou

Combine modules

Composite modules

Convolutional module

- many linear modules with shared parameters.

Remember the NeoCognitron?

CNNs for signal processing

Time-Delay Neural Networks

- 1990: speaker-independent phoneme recognition

- 1991: speaker-independent word recognition

- 1992: continuous speech recognition.

17/26

CNNs for image analysis

2D Convolutional Neural Networks

- 1989: isolated handwritten digit recognition

- 1991: face recognition, sonar image analysis

- 1993: vehicle recognition

- 1994: zip code recognition

- 1996: check reading

CNNs for character recognition

CNNs for face recognition

Note: same code as the digit recognizer.

Combining CNNs and HMM

Combining CNNs and HMM

Combining CNNs and FSTs

Check reading involves

- locating the fields.
- segmenting the characters.
- recognizing the characters.
- making sense of the string.

Global training

integrate all these modules
 into a single trainable system.

Deployment

- deployed in 1996-1997
- was still in use in 2007.
- processing pprox 15% of the US checks.

Optimisation for multilayer network

The simplest multilayer network

- Two weights w_1, w_2
- One example $\{(1,1)\}$

Optimisation for multilayer network

Landscape

- Ravine along $w_1 w_2 = 1$.
- Massive saddle point near the origin.
- Mountains in the quadrants $w_1 w_2 < 0$.
- Plateaux in the distance.

Tricks of the trade

- How to initialize the weights?
- How to avoid the great saddle point?
- etc.

Capacity control through optimization

Idea

- Initialize weights with quite small values (but not too small!)
 You are exercising the linear part of the sigmoid
 The whole network therefore implements a linear function.
- When learning progresses, weights increase.
 The function slowly becomes more and more nonlinear.

Early stopping

- Monitor both the training and validation errors during training.
- The training error illustrates the optimisation process.
- Stop training when the validation error stops improving.