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Summary: The Expectation-Maximization (EM) algorithm is a general algorithm for
maximum-likelihood estimation where the data is “incomplete” or the likelihood function
involves latent variables. The notion of “incomplete data” and “latent variables” is related.
When we have a latent variable, the data will be incomplete since we don’t observe val-
ues of the latent variables. Similarly, when the data is incomplete, we can also associate
some latent variable with the missing data. EM is an iterative method which alternates be-
tween performing an expectation (E) step (computing the expectation of the log-likelihood
evaluated using the current estimate for the variables) and a maximization (M) step that
computes parameters maximizing the expected log-likelihood found on the E step. These
parameter-estimates are then used to determine the distribution of the latent variables in
the next E-step. EM is a convenient algorithm for certain maximum likelihood problems.
It’s a viable alternative to Newton or Conjugate Gradient algorithms (an algorithm for the
numerical solution of particular systems of linear equations). EM is an offline algorithm
that is more “fashionable” than Newton or Conjugate Gradient in the sense that there are
more research papers using EM. It is also simpler. There are many extensions to EM e.g.,
variational methods or stochastic EM.

Gaussian Mixture Model: Consider a simple Gaussian mixture with K components (can
visualize them as clusters with different shapes e.g., small or large). Each Gaussian is called
a component (different circle for each Gaussian in Slide 4). To generate an observation:

• Pick a component k with probabilities λ1, λ2, . . . , λk and
∑

k λk = 1

• Generate x from component k with probability N (µi, σ)

For a simple Gaussian mixture model (GMM) the standard deviation σ is known and is a
constant. Now consider a mixture of two Gaussians with trainable standard deviations. The
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likelihood becomes infinite when one of them specializes on a single observation (see figure
on Slide 5). Maximum likelihood estimation works for all discrete probabilistic models and
for some (and not all) continuous probabilistic models. The simple example of Slide 5 (of
one Gaussian specializing on a single observation) is not one of them. So in theory MLE
doesn’t work on simple GMM, but people ignore the problem and get away with it anyway.
There are two possible explanations for this:

• Unlike discrete distributions, densities are not bounded (ceiling fixes the problem).
There is never just one example (on which the Gaussian can specialize on). Ceiling is
reasonably low enough and we generally just want to avoid infinity. Because we will
find local maxima, instead of global, it will work (because of non-convexivity).

• Probability, in general, is mathematically sound. You condition on the samples. From
the point of view of strict probability, what we are doing is wrong. But in practice it
works (an analogy can be the wild west, there were no formal rules but the system still
seemed to somehow work).

Expectation-Maximization: Informally, the EM algorithm starts with randomly assign-
ing values to all the parameters to be estimated. It then iteratively alternates between the
expectation (E) step and the maximization (M) step. In the E-step, it computes the ex-
pected likelihood for the complete data (the Q-function) where the expectation is taken as
the computed conditional distribution of the latent variables given the current settings of
parameters and our observed (incomplete) data. In the M-step, it re-estimates all the param-
eters by maximizing the Q-function. Once we have a new generation of parameter values,
we can repeat the E-step and another M-step. This process continues until the likelihood
converges, i.e., reaching a local maxima. Intuitively, what EM does is to iteratively “guess”
the values of the hidden variables and to re-estimate the parameters by assuming that the
guessed values are the true values.

The EM algorithm is a “hill-climbing” approach, thus it can only be guanranteed to reach a
local maxima. When there are multiple maximas, whether we will actually reach the global
maxima clearly depends on where we start i.e., if we start at the “right hill”, we will be
able to find a global maxima. When there are multiple local maximas, it is often hard to
identify the “right hill”. There are two commonly used strategies to solving this problem.
The first is that we try many different initial values and choose the solution that has the
highest converged likelihood value. The second uses a much simpler model (ideally one with
a unique global maxima) to determine an initial value for more complex models. The idea
is that a simpler model can hopefully help locate a rough region where the global optima
exists. We start from a value in that region to search for a more accurate optima using a
more complex model.

We only observe the x1, x2, . . . values. Some models would be very easy to optimize if we
knew which components y1, y2, . . . generated them. For a given X, we guess a distribution
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Q(Y |X). Regardless of our guess, logL(θ) = L(Q, θ) +D(Q, θ) with

L(Q, θ) =
n∑
i=1

K∑
y=1

Q(y|xi) log
Pθ(xi|y)Pθ(y)

Q(y|xi)
(1)

and

D(Q, θ) =
n∑
i=1

K∑
y=1

Q(y|xi) log
Q(y|xi)
Pθ(y|xi)

. (2)

Proof:

L(Q, θ) +D(Q, θ) =
n∑
i=1

K∑
y=1

Q(y|xi)
[
log

Pθ(xi|y)Pθ(y)

Q(y|xi)
+ log

Q(y|xi)
Pθ(y|xi)

]

=
n∑
i=1

K∑
y=1

Q(y|xi) log
Pθ(xi|y)Pθ(y)

Pθ(y|xi)
=

n∑
i=1

K∑
y=1

Q(y|xi) logPθ(xi)

=
n∑
i=1

logPθ(xi) = logL(θ) .

L(Q, θ) is easy to maximize. Similar to maximum likelihood for a single gaussian using
examples weighted by Q(y|xi).

D(Q, θ) is the KL-divergence D(QY |X ||PY |X). The Kullback-Leibler (KL) divergence is a
non-symmetric measure of the difference between two probability distributions P and Q.
What is important is that it is positive.

Now for EM (think of it like “pushing”, Slide 9), first change Q to minimize D, leaving logL
unchanged and change θ to maximize L. Meanwhile D can only increase.

The E-step is:

qik ←
λk√
|
∑

k |
e−

1
2
(xi−µk)T

P−1
k (xi−µk) (3)

which is quick as we don’t even normalize and the M-step is:

µk ←
∑

i qikxi∑
i qik

Σk ←
∑

i qik(xi − µk)(xi − µk)T∑
i qik

λk ←
∑

i qik∑
iy qiy

(4)

Here the λ are normalized.

Some points to note for implementation are:

• The qik are often very small because e−x gets quickly very small when x is moderately
large. So compute log qik instead of qik.
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• EM gets easily stuck in local maxima.

• Computing log likelihood is useful for monitoring progress. Right place to compute is
after E-step and before M-step.

EM for GMM: In the illustration on Slide 11 - 18, the green, red, and blue big circles are
approximations of Gaussians. Now, we can do the M-step. We see that after 20-iterations,
it converges. The Gaussian Mixture Model (GMM) can be used for anomaly detection. We
model PX with a GMM and declare anomaly when density falls below a threshold (see figure
on Slide 19). The yellow area is where the density falls below a threshold - alarm condition.
GMM can also be used for classification. Basically model PX|Y = y for eery class with
GMM and then calculate Bayes optimal decision boundary. In the example (Slide 20), there
are 2 models. A red class A and a grey class B. In yellow we reject the examples and are
ambiguous in the green area.

So GMM seems very useful, but what is the price for using it? For starters, estimating
densities is nearly impossible. If k is high, can get any kinds of density. Secondly, can
we trust the GMM distributions? Maybe when lots of data points or when in very low
dimension. Decisions are actually more reliable than GMM distributions because they have
a more clear decision boundary than distributions. However, you still need cross-validation
to check results i.e., results can be good or suspicious (so need to do cross-validation).

Other Mixture Models: We also consider the Bernoulli distribution; which is named after
Swiss scientist Jacob Bernoulli and is a discrete probability distribution that takes value 1
with success probability p and value 0 with failure probability q = 1 − p. Can think of
dictionary of words and detect presence or absence of words; 1 if word appears and 0 if the
word doesn’t appear. As another example, suppose you are in “drug testing” and want to
know how long a patient survives after treatment. Case-1: treatment doesn’t work. Case-2:
die after some time e.g., cancer patients. Case-3: die long after with something else (can’t
model that something else). Need to know what proportion was cured and what had life
extended. Need lots of data points.

Consider problems where we need to find e.g., is something green? Is it square? Does it
have tail? Hands? In Slide 24, we get µi if xi is 1. The covariance is diagonal. xi is the
coefficient and µi are the parameters. With

∑
k λk = 1 (normalize), Covariance is no longer

diagonal and components are different. For example, some will say yellow is 0, and some
will say yellow is 1. By using Bernoulli, we weaken the independence assumptions.

For Bernoulli, the log likelihood is logL(θ) =
∑n

i=1 log
∑k

i=1 λkPµk
(xi). And we are given a

dataset x = x1, x2, . . . , xn. Decomposition is similar to Slide 8, but now:

qik ← λkPµk(xi) (5)

and

µk ←
∑

i qikxi∑
i qik

λk ←
∑

i qik∑
iy qiy

(6)
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In Slide 26, we get basically the same graph (as Slide 8). We change θ and Q and can only
go higher (didn’t normalize). This is fairly simple.

Data with Missing Values: Data with missing values is a fact of life. If they were known,
we can just fit a big Gaussian. Since we don’t know something, we will guess it. Q(y|x) is
just random if patterns of missing are independent i.e., had correct example, but someone
randomly removed points. But in real life missing values are there for a reason e.g., below
some threshold (garbage) and not really random.

Conclusion: Probabilistic model is nice to have, if you can pay for it. We need to be pretty
sure what we want and ask the question – can we afford it? For example, in a business know
what you want i.e., want to maximize earnings (dollars). Or in a post office, reduce the cost
of sending mail (can see what is the price of correcting misclassified envelopes manually vs.
shipping them to the wrong address). However, if we want to improve quality of life and
not just money then that’s not so simple. With probabilistic model you are solving a harder
problem i.e., needs to be good everywhere even near the boundaries. How do we know if we
can afford a probability model? Most of the time we don’t know and just try. Some people
recommend that try to always use a probability model, unless you can’t afford it.
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