
DRAFT — a final version will be posted shortly

COS 424: Interacting with Data

Lecturer: Léon Bottou Lecture # 7
Scribe: Zhen James Xiang and Jieqi Yu 3/4/2010

Announcements

To leave more time for the final project, homework 3 will be a continuation of Homework 2
and will be significantly shorter. Also Homework 4 will be focusing on a narrow topic.

Introduction

To put things in context, we first revisit the “mix and match” slide (slide 2) that describes
different aspects of machine learning. For this clustering lecture, we will cover both proba-
bilistic and non-probabilistic representations, and both online and offline algorithms.

What is clustering? From a very high level, clustering means splitting the observations
into subsets with similar characteristics. It has many applications (slide 3). The center
philosophy is dividing the data into smaller units that are easier to handle. One can then
understand the data better by studying both the intra-cluster and inter-cluster relationships.

This lecture is organized by the following 4 topics: (1) What is a cluster? (2) K-Means.
(3) Hierarchical Clustering. (4) Simple Gaussian Mixtures.

What is A Cluster

The example on slide 5 explains the concept of clusters. We have two neatly separated
classes (red and blue) in this example. Apparently, if we know the labels of the points then
we can easily infer the Bayes decision boundary. But even if we don’t know the labels and
just observe P{X} (the yellow mass), we can still make sense of the data and infer the
decision boundary, because the clusters leave a trace in P{X}.

However, is this always the case? Let’s consider an input space transformation (slide
6). Under this transformation, each point is mapped to another point and this results in a
different input space. In real world the choice of an input space is usually arbitrary because
of engineering reasons. For instance, the “pixels” on our retina and the “pixels” on our
camera give different input spaces, because in our retina the sensory cells are denser near
the fovea and sparser in the peripheral. The engineering (in this case the way that cameras
are built) usually dictates us to work in an arbitrary input space.

After such arbitrary input space transformation, we get a different P{X} on slide 7 (the
yellow mass). As we can see, although the Bayes decision boundary and classification error
rate remain invariant, the neatly separated clusters are gone.

The lesson here is that compared to classification or regression problems, there is usually
an additional twist in clustering problems. The clustering result is highly dependent on the
input space, which is arbitrary.

K-Means

The K-Means problem is to minimize the distortion function C(w) defined on slide 8. (In
this lecture we use the Euclidean distance as the error measure but other error measures can
also be used.) The target function C(w) is not convex. As a matter of fact if (w1, w2, . . . , wk)
is a minimum point, then any permutation of (w1, w2, . . . , wk) will also be a minimum point.

The problem of minimizing C(w) is NP hard in general. People can contrive examples in
which one must examine all the combinations to find a solution. Fortunately this is usually
not the case in real world clustering problems.

To solve the K-Means problem, we first introduce the Lloyd’s algorithm (slide 9). This
is an offline algorithm proposed in the 50’s. To initialize the algorithm, we can pick K
random observations and use them as the initial centroids. The averaging update

wk ←
1
|Sk|

∑
i∈Sk

xi (1)

is a result of using Euclidean distance error measure. (If we use the absolute value as the
error measure, the updated centroid will be the median rather than the average.)

Slide 10-13 demonstrate the algorithm on a simple data set. Slide 14 explains why
Lloyd’s algorithm works. The red line stands for L(s, w), the quantization error. The
blue line stands for C(w). The gap between red and blue lines is D(s, w), which measures
the assignment error. Notice that D(s, w) is always non-negative because mink ||xi − wk||2
corresponds to the optimal assignment. From the description in step 1 and 2 it is easy to
see that Lloyd’s algorithm keeps driving down C(w).

Next we introduce an online K-Means algorithm, the MacQueen’s algorithm developed
by James MacQueen in 1967 (slide 15). Interestingly the term “K-Means” was first coined
by James MacQueen in the same paper. MacQueen’s algorithm is much faster than the
Lloyd’s algorithm. One can easily run the algorithm with multiple initializations.

We provide three explanations of why MacQueen’s algorithm works (slide 16). In the
first explanation we define un as the mean of n samples: un =

∑n
i=1 xi. Notice that un can

be recursively computed by:

un = un−1 +
1
n

(xn − un−1) (2)

The update formulation of MacQueen’s algorithm takes exactly the same form:

wst ← wst +
1
nst

(xt − wst), (3)

which makes wst to approximate the average un of each subset. The second explanation
views the update step as a stochastic gradient descent step. Built on this understanding,
the third explanation points out that even when considering the second order gradients, the
step length γt = 1

nst
matches the Newton step. Because the Hessian of C(w) is a diagonal

matrix with diagonal elements being the fractions of observations assigned to each clusters.
An example application of clustering algorithms is color coding of images. Indexed color

image formats (such as gif, tiff) use a small palette of K colors to approximate the general
color (r, g, b) in an image. This is a clustering problem and is discussed on slide 17.

One drawback of K-Means algorithms is that we have to specify K. There are a lot
of literature on how to choose K. One interesting method is the elbow method (slide 18).
However the method may not always be effective. Because every point on the curve is just
a local minimal value. It is possible that these local minimal values will not connect as a
smooth curve. One could end up with a zig-zag shaped curve if unlucky.

Hierarchical Clustering

There are two ways to perform hierarchical clustering (slide 19). One method is agglom-
erative clustering. In this method, one question is how to decide if two clusters are close.

2

Different distance measures (minimum distance, maximum distance, average distance) can
be used. Another method is divisive clustering, the questions here are how to define the
“largest cluster” to divide (is the largest cluster the one with the most points, or the one
that can be best divided?) and how to divide it. There are many variants of this method.

In the algorithm on slide 20. We first use a fast online K-Means algorithm (such as
MacQueen’s algorithm) and then merge the clusters. The derivation uses the equalities:∑

x∈A
x = nAwA,

∑
x∈B

x = nBwB (4)

One can also do a small K-Means in each step instead of merging the clusters. If we do
this, the clusters will have a smaller distortion, but they would no longer be hierarchical
(i.e. organized as a tree).

The hierarchical clustering algorithm outputs a “dendogram”. One example is shown on
slide 21. In this example the faculties in a psychology department are hierarchically clustered
into a tree structure. The tree is then used to hopefully understand the relationships between
these people. This is common in clustering analysis, but one should keep in mind that the
clustering result is dependent on the input space and is only a representation of the chosen
input space.

Simple Gaussian Mixtures

Now we turn to the probabilistic formulations. Clustering is essentially a density estimation
problem. We mentioned in previous lectures that density estimation is “hopeless” unless
we have a parametric model. In this lecture we assume the simple Gaussian mixture model.
“Simple” means that the standard deviation is the same for all components and is known.
This will keep things simple and more analogous to K-Means. In the next lecture we will
discuss mixture models in a more general setting and in more details.

After these assumptions, we can write the maximum likelihood as the last equation on
slide 23. It is non convex and suffers from local minimums. One can of course still do
maximum likelihood estimation via conjugate gradient descent or Newton method. But
there is a simpler method that is very meaningful too.

The main idea of the method is to have a guess for Y, since things will be much simpler
if we knew Y. We decompose logL(θ) as

logL(θ) = L(Q, θ)−M(Q, θ) +D(Q, θ) (5)

where L(Q, θ),M(Q, θ) and D(Q, θ) are defined on slide 24. Although being a daunting ex-
pression, this decomposition allows us to effective maximize logL(θ) by optimizing separate
terms on the right hand side of (5). In this decomposition, L(Q, θ) is a simple Gaussian
likelihood and M(Q, θ) and D(Q, θ) are KL divergence measures.

This results in the EM algorithm (slide 25) that is very similar to the Lloyd’s algorithm.
The first step is soft assignment (which is also strangely called the E step). The assignment
doesn’t change L(Q, θ). The second step, also called the M step, updates the parameter of
Gaussian models, which is easy with fixed assignment.

The major difference between the EM algorithm and the Lloyd’s algorithm is that the
hard assignment in Lloyd’s algorithm is replaced by the soft assignment in EM algorithm.
(When parameter σ → 0, the soft assignment result converges to the hard assignment
result.) As a result , the EM algorithm is more robust to local minima. But as a tradeoff,

3

K = 5

K = 4

K = 3

3

4

5

σ

L(θ)

μ1

σ2σ1

μ2

A

B

Figure 1: Overlapping Clusters

K = 5

K = 4

K = 3

3

4

5

1/σ

F

μ1

σ2σ1

μ2

A

B

Figure 2: The interaction between σ and K.

it is slower than the Lloyd’s algorithm. The soft assignment also makes the EM algorithm
slower in separating different clusters, especially when the clusters have a lot of overlap and
σ is large. This can be illustrated by the example in Figure 1.

In this example, suppose A and B are two cluster centroids that happen to be close to
each other. The red point is a new data point that has almost equal-distance from A and
B. In this situation, the EM algorithm may assign a probability of 0.51 that the new data
point belongs to A, and a probability of 0.49 that the point belongs to B. Such probability
assignment does not affect the position of centroids much in the next step. As a result, the
EM algorithm will have a hard time separating these two close-by clusters. On the other
hand, the K-Means algorithm has a hard assignment rule and assigns the new point to A.
On the next step, the centroid A will move significant toward the new point. This makes
the algorithm much faster in separating these two clusters.

The separation of overlapping clusters is controlled by parameters K (the number of
clusters) and σ (the variance of the simple Gaussian mixture). There is an interesting
interplay between these two parameters as shown in Figure 2. In this figure, we plot the
following monotonic function F of L(θ)

F = σ2 logL(θ) +
n

2
σ2 log σ2 (6)

over 1
σ for different K. The data points are more “willing to separate” under a small σ

(higher F for larger K when 1
σ is large).

As an exercise, verify that in Figure 2 the curve K = 1 would be a horizontal line.
For the next lecture, we will discuss Expectation Maximization in a general setting. We

will talk about the EM algorithm for general Gaussian Mixtures Models and for all kinds
of other mixture models, and how to deal with missing data.

4

