# Clustering

Léon Bottou

**NEC Labs America** 

COS 424 - 3/4/2010

# **Agenda**

| Goals                         | Classification, clustering, regression, other.                                                                                                        |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Representation                | Parametric vs. kernels vs. nonparametric Probabilistic vs. nonprobabilistic Linear vs. nonlinear Deep vs. shallow                                     |
| Capacity Control              | Explicit: architecture, feature selection Explicit: regularization, priors Implicit: approximate optimization Implicit: bayesian averaging, ensembles |
| Operational<br>Considerations | Loss functions Budget constraints Online vs. offline                                                                                                  |
| Computational Considerations  | Exact algorithms for small datasets. Stochastic algorithms for big datasets. Parallel algorithms.                                                     |

### Introduction

#### Clustering

Assigning observations into subsets with similar characteristics.

### **Applications**

- medecine, biology,
- market research, data mining
- image segmentation
- search results
- topics, taxonomies
- communities

### Why is clustering so attractive?

An embodiment of Descartes' philosophy

```
"Discourse on the Method of Rightly Conducting One's Reason":
```

- "... divide each of the difficulties under examination
  - ... as might be necessary for its adequate solution."

## **Summary**

- 1. What is a cluster?
- 2. K-Means
- 3. Hierarchical clustering
- 4. Simple Gaussian mixtures

### What is a cluster?



Two neatly separated classes leave a trace in  $\mathbb{P}\{X\}$ .

## Input space transformations



Input space is often an arbitrary decision.

For instance: camera pixels versus retina pixels.

What happens if we apply a reversible transformation to the inputs?

## Input space transformations

The Bayes optimal decision boundary moves with the transformation.

The Bayes optimal error rate is unchanged.

The neatly separated clusters are gone!



Clustering depends on the <u>arbitrary</u> definition of the input space!

This is very different from classification, regression, etc.

### **K-Means**

#### The K-Means problem

- Given observations  $x_1 \dots x_n$ , determine K centroids  $w_1 \dots w_k$  that minimize the distortion  $C(w) = \sum_{i=1}^n \min_k \|x_i - w_k\|^2$ .

### Interpretation

Minimize the discretization error.

#### **Properties**

- Non convex objective.
- Finding the global minimum is NP-hard in general.
- Finding acceptable local minima is surprisingly easy.
- Initialization dependent.

### Offline K-Means

### Lloyd's algorithm

initialize centroids  $w_k$  repeat

- assign points to classes:

$$\forall i, \ \ s_i \leftarrow rg \min_{k} \|x_i - w_k\|^2. \ \ \ \ S_k \leftarrow \{i \ : \ s_i = k\}.$$

- recompute centroids:

$$\forall k, \quad w_k \leftarrow \mathop{\mathrm{arg\,min}}_{w} \sum_{i \in S_k} \|x_i - w\|^2 = \frac{1}{\mathop{\mathrm{card}}(S_k)} \, \sum_{i \in S_k} x_i.$$

9/27

until convergence.



#### Initial state:

- Squares = data points.
- Circles = centroids.



1. Assign data points to clusters.



2. Recompute centroids.

12/27



Assign data points to clusters...

## Why does Lloyd's algorithm work?

Consider an arbitrary cluster assignment  $s_i$ .

$$C(w) = \sum_{i=1}^{n} \min_{k} ||x_i - w_k||^2 = \sum_{i=1}^{n} ||x_i - w_{s_i}||^2 - \sum_{i=1}^{n} ||x_i - w_{s_i}||^2 - \min_{k} ||x_i - w_k||^2$$

$$\mathcal{L}(s, w)$$

$$\mathcal{D}(s, w) \ge 0$$

1. Change  $\mathbf{s}_i$  to minimize  $\mathcal{D}$  leaving  $\mathbf{C}(\mathbf{w})$  unchanged.



2. Change  $w_k$  to minimize  $\mathcal{L}$ . Meanwhile  $\mathcal{D}$  can only increase.

### **Online K-Means**

#### MacQueen's algorithm

initialize centroids  $w_k$  and  $n_k = 0$ . repeat

- pick an observation  $x_t$  and determine cluster  $s_t = rg \min_k \|x_t w_k\|^2.$
- update centroid  $s_t$ :  $n_{s_t} \leftarrow n_{s_t} + 1. \quad w_{s_t} \leftarrow w_{s_t} + \frac{1}{n_{s_t}}(x_t w_{s_t}).$  until satisfaction.

#### **Comments**

- MacQueen's algorithm finds decent clusters much faster.
- Final convergence could be slow. Do we really care?
- Just perform one or two passes over the randomly shuffled observations.

## Why does MacQueen's algorithm work?

### **Explanation 1: Recursive averages.**

- Let 
$$u_n=rac{1}{n}\sum_{i=1}^n x_i$$
. Then  $u_n=u_{n-1}+rac{1}{n}(x_n-u_{n-1}).$ 

#### **Explanation 2: Stochastic gradient.**

– Apply stochastic gradient to  $C(w) = \frac{1}{2n} \sum_{i=1}^n \min_k \|x_i - w_k\|^2$ :

$$w_{s_t} \leftarrow w_{s_t} + \gamma_t (x_t - w_{s_t})$$

### Explanation 3: Stochastic gradient + Newton.

- The Hessian H of C(w) is diagonal and contains the fraction of observations assigned to each cluster.

$$w_{s_t} \leftarrow w_{s_t} + \frac{1}{t} H^{-1} (x_t - w_{s_t}) = w_{s_t} + \frac{1}{n_{s_t}} (x_t - w_{s_t})$$

## **Example: Color quantization of images**

#### **Problem**

– Convert a 24 bit RGB image into a indexed image with a palette of K colors.

#### **Solution**

- The (r,g,b) values of the pixels are the observations  $x_i$
- The (r,g,b) values of the K palette colors are the centroids  $w_k$ .
- Initialize the  $w_k$  with an all-purpose palette
- Alternatively, initialize the  $w_k$  with the color of random pixels.
- Perform one pass of MacQueen's algorithm
- Eliminate centroids with no observations.
- You are done.

# How many clusters?

#### Rules of thumb?

$$-K=10$$
,  $K=\sqrt{n}$ , ...

#### The Elbow method?

- Measure the distortion on a validation set.
- The distortion decreases when k increases.
- Sometimes there is no elbow, or several elbows
- Local minima mess the picture.



C(w)

#### Rate-distortion

- Each additional cluster reduces the distortion.
- Cost of additional cluster vs. cost of distortion.
- Just another way to select K.

#### Conclusion

Clustering is a very subjective matter.

## Hierarchical clustering

### **Agglomerative clustering**

- Initialization: each observation is its own cluster.
- Repeatedly merge the closest clusters
  - single linkage  $D(A,B) = \min_{x \in A, \ y \in B} d(x,y)$
  - complete linkage  $D(A,B) = \max_{x \in A, \ y \in B} d(x,y)$
  - distortion estimates, etc.

#### **Divisive clustering**

- Initialization: one cluster contains all observations.
- Repeatedly divide the largest cluster, e.g. 2-Means.
- Lots of variants.

## K-Means plus Agglomerative Clustering

#### **Algorithm**

- Run K-Means with a large K.
- Count the number of observation for each cluster.
- Merge the closest clusters according to the following metric.

Let A be a cluster with  $n_A$  members and centroid  $w_A$ .

Let B be a cluster with  $n_B$  members and centroid  $w_B$ .

The putative center of  $A \cup B$  is  $w_{AB} = (n_A w_A + n_b w_B)/(n_A + n_B)$ .

Quick estimate of the distortion increase:

$$d(A,B) = \sum_{x \in A \cup B} \|x - w_{AB}\|^2 - \sum_{x \in A} \|x - w_A\|^2 - \sum_{x \in B} \|x - w_B\|^2$$
$$= n_A \|w_A - w_{AB}\|^2 + n_B \|w_B - w_{AB}\|^2$$

## **Dendogram**



# Simple Gaussian mixture (1)



### Clustering via density estimation.

- Pick a parametric model  $\mathbb{P}_{\theta}(X)$ .
- Maximize likelihood.

### Pick a parametric model

- There are K components
- To generate an observation:
  - a.) pick a component k with probabilities  $\lambda_1 \dots \lambda_K$ .
  - b.) generate x from component k with probability  $\mathcal{N}(\mu_i, \sigma)$ .

#### **Notes**

- Same standard deviation  $\sigma$  (for now).
- That's why I write "Simple GMM".

# Simple Gaussian mixture (2)

**Parameters:**  $\theta = (\lambda_1, \mu_1, \dots, \lambda_K, \mu_K)$ 

Model: 
$$P_{\theta}(Y = y) = \lambda_y$$
.  $P_{\theta}(X = x | Y = y) = \frac{1}{\sigma (2\pi)^{\frac{d}{2}}} e^{-\frac{1}{2} \left(\frac{x - \mu_y}{\sigma}\right)^2}$ .

#### Likelihood

$$\log L(\theta) = \sum_{i=1}^{n} \log P_{\theta}(X = x_i) = \sum_{i=1}^{n} \log \sum_{y=1}^{K} P_{\theta}(Y = y) P_{\theta}(X = x_i | Y = y) = \dots$$

#### Maximize!

- This is non convex.
- There are k! copies of each minimum (local or global).
- Conjugate gradients or Newton works.

## **Expectation-Maximization**

### Fortunately there is a simpler solution.

- We observe X
- We do not observe Y.
- Things would be simpler if we knew Y.

### **Decomposition**

- For a given X, guess a distribution Q(Y|X).
- Regardless of our guess,  $\log L(\theta) = \mathcal{L}(Q, \theta) \mathcal{M}(Q, \theta) + \mathcal{D}(Q, \theta)$

$$\begin{split} \mathcal{L}(Q,\theta) &= \sum_{i=1}^n \sum_{y=1}^K Q(y|x_i) \log P_{\theta}(x_i|y) \quad \text{Gaussian log-likelihood} \\ \mathcal{M}(Q,\theta) &= \sum_{i=1}^n \sum_{y=1}^K Q(y|x_i) \log \frac{Q(y|x_i)}{P_{\theta}(y)} \quad \text{KL divergence } D(P_Y \| Q_{Y|X}) \\ \mathcal{D}(Q,\theta) &= \sum_{i=1}^n \sum_{y=1}^K Q(y|x_i) \log \frac{Q(y|x_i)}{P_{\theta}(y|x_i)} \quad \text{KL divergence } D(Q_{Y|X} \| P_{Y|X}) \end{split}$$

## **Expectation-Maximization**

Remember Lloyd's algorithm for K-Means?



1. Change Q to minimize  $\mathcal{D}$  leaving  $\log L$  unchanged.

**E-Step** Soft assignments 
$$q_{ik} \leftarrow \lambda_k \, e^{-\frac{1}{2} \left( \frac{x_i - \mu_k}{\sigma} \right)^2}$$
**M-Step** Update parameters  $\mu_k \leftarrow \frac{\sum_i q_{ik} \, x_i}{\sum_i q_{ik}}$ .  $\lambda_k \leftarrow \frac{\sum_i q_{ik}}{\sum_{iy} q_{iy}}$ .

# Simple Gaussian mixture (3)

#### **Relation with K-Means**

- Like K-Means but with soft assignments.
- Limit to K-Means when  $\sigma \rightarrow 0$ .

#### In practice

- Clearly slower than K-Means.
- More robust to local minima.
- Annealing  $\sigma$  helps.

#### **Subtleties**

- Relation between  $\sigma$  and the number of clusters. . .
- Relation between EM and Newton.

### **Next Lecture**

### **Expectation Maximization in general**

- EM for general Gaussian Mixtures Models.
- EM for all kinds of mixtures.
- EM for dealing missing data.

27/27