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Agenda

Goals Classification, clustering, regression, other.

Representation

Parametric vs. kernels vs. nonparametric

Probabilistic vs. nonprobabilistic

Linear vs. nonlinear

Deep vs. shallow

Capacity Control

Explicit: architecture, feature selection

Explicit: regularization, priors

Implicit: approximate optimization

Implicit: bayesian averaging, ensembles

Operational

Considerations

Loss functions

Budget constraints

Online vs. offline

Computational

Considerations

Exact algorithms for small datasets.

Stochastic algorithms for big datasets.

Parallel algorithms.
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Introduction

Clustering
Assigning observations into subsets with similar characteristics.

Applications
– medecine, biology,
– market research, data mining
– image segmentation
– search results
– topics, taxonomies
– communities

Why is clustering so attractive?
– An embodiment of Descartes’ philosophy

“Discourse on the Method of Rightly Conducting One’s Reason”:
“. . . divide each of the difficulties under examination

. . . as might be necessary for its adequate solution.”
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Summary

1. What is a cluster?

2. K-Means

3. Hierarchical clustering

4. Simple Gaussian mixtures
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What is a cluster?
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Two neatly separated classes leave a trace in P {X}.
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Input space transformations

Input space is often an arbitrary decision.

For instance: camera pixels versus retina pixels.

What happens if we apply a reversible transformation to the inputs?
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Input space transformations

The Bayes optimal decision boundary moves with the transformation.
The Bayes optimal error rate is unchanged.
The neatly separated clusters are gone!
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Clustering depends on the arbitrary definition of the input space!

This is very different from classification, regression, etc.
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K-Means

The K-Means problem

– Given observations x1 . . . xn, determine K centroids w1 . . . wk

that minimize the distortion C(w) =

n∑
i=1

min
k
‖xi − wk‖2.

Interpretation

– Minimize the discretization error.

Properties

– Non convex objective.

– Finding the global minimum is NP-hard in general.

– Finding acceptable local minima is surprisingly easy.

– Initialization dependent.

Léon Bottou 8/27 COS 424 – 3/4/2010



Offline K-Means

Lloyd’s algorithm

initialize centroids wk
repeat

- assign points to classes:

∀i, si← arg min
k
‖xi − wk‖2. Sk ← {i : si = k}.

- recompute centroids:

∀k, wk ← arg min
w

∑
i∈Sk

‖xi − w‖2 =
1

card(Sk)

∑
i∈Sk

xi.

until convergence.

Léon Bottou 9/27 COS 424 – 3/4/2010



Lloyd’s algorithm – Illustration

Initial state:

– Squares = data points.

– Circles = centroids.
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Lloyd’s algorithm – Illustration

1. Assign data points to clusters.
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Lloyd’s algorithm – Illustration

2. Recompute centroids.
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Lloyd’s algorithm – Illustration

Assign data points to clusters. . .
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Why does Lloyd’s algorithm work?

Consider an arbitrary cluster assignment si.

C(w) =

n∑
i=1

min
k
‖xi−wk‖2 =

n∑
i=1

‖xi − wsi‖
2

︸ ︷︷ ︸
L(s,w)

−
n∑
i=1

‖xi − wsi‖
2 −min

k
‖xi − wk‖2︸ ︷︷ ︸

D(s,w)≥0

L

D
���� ����

L

D���
����

D ��

L

�	��
��
�����������������D�������
���������
��
��	

�	��
��
�����������������L	������
����D������������������	
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Online K-Means

MacQueen’s algorithm

initialize centroids wk and nk = 0.

repeat

- pick an observation xt and determine cluster

st = arg min
k
‖xt − wk‖2.

- update centroid st:

nst ← nst + 1. wst ← wst +
1
nst

(
xt − wst

)
.

until satisfaction.

Comments

– MacQueen’s algorithm finds decent clusters much faster.

– Final convergence could be slow. Do we really care?

– Just perform one or two passes over the randomly shuffled observations.
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Why does MacQueen’s algorithm work?

Explanation 1: Recursive averages.

– Let un =
1

n

n∑
i=1

xi. Then un = un−1 +
1

n
(xn − un−1).

Explanation 2: Stochastic gradient.

– Apply stochastic gradient to C(w) = 1
2n

∑n
i=1 mink ‖xi − wk‖2:

wst ← wst + γt
(
xt − wst

)

Explanation 3: Stochastic gradient + Newton.

– The Hessian H of C(w) is diagonal and contains the

fraction of observations assigned to each cluster.

wst ← wst +
1

t
H−1(xt − wst) = wst +

1

nst

(
xt − wst

)
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Example: Color quantization of images

Problem

– Convert a 24 bit RGB image into a indexed image

with a palette of K colors.

Solution

– The (r, g, b) values of the pixels are the observations xi
– The (r, g, b) values of the K palette colors are the centroids wk.

– Initialize the wk with an all-purpose palette

– Alternatively, initialize the wk with the color of random pixels.

– Perform one pass of MacQueen’s algorithm

– Eliminate centroids with no observations.

– You are done.
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How many clusters?

Rules of thumb ?

– K = 10, K =
√
n, . . .

The Elbow method ?

– Measure the distortion on a validation set.

– The distortion decreases when k increases.

– Sometimes there is no elbow, or several elbows

– Local minima mess the picture. �
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Rate-distortion

– Each additional cluster reduces the distortion.
– Cost of additional cluster vs. cost of distortion.
– Just another way to select K.

Conclusion

– Clustering is a very subjective matter.
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Hierarchical clustering

Agglomerative clustering

– Initialization: each observation is its own cluster.

– Repeatedly merge the closest clusters

– single linkage D(A,B) = min
x∈A, y∈B

d(x, y)

– complete linkage D(A,B) = max
x∈A, y∈B

d(x, y)

– distortion estimates, etc.

Divisive clustering

– Initialization: one cluster contains all observations.

– Repeatedly divide the largest cluster, e.g. 2-Means.

– Lots of variants.
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K-Means plus Agglomerative Clustering

Algorithm

– Run K-Means with a large K.

– Count the number of observation for each cluster.

– Merge the closest clusters according to the following metric.

Let A be a cluster with nA members and centroid wA.

Let B be a cluster with nB members and centroid wB.

The putative center of A ∪B is wAB = (nAwA + nbwB)/(nA + nB).

Quick estimate of the distortion increase:

d(A,B) =
∑

x∈A∪B
‖x− wAB‖2 −

∑
x∈A
‖x− wA‖2 −

∑
x∈B
‖x− wB‖2

= nA ‖wA − wAB‖2 + nB ‖wB − wAB‖2
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Dendogram
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Simple Gaussian mixture (1)

Clustering via density estimation.

– Pick a parametric model Pθ(X).

– Maximize likelihood.

Pick a parametric model

– There are K components

– To generate an observation:

a.) pick a component k

with probabilities λ1 . . . λK.

b.) generate x from component k

with probability N (µi, σ).

Notes

– Same standard deviation σ (for now).

– That’s why I write “Simple GMM”.
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Simple Gaussian mixture (2)

Parameters: θ = (λ1, µ1, . . . , λK , µK)

Model: Pθ(Y = y) = λy. Pθ(X = x|Y = y) =
1

σ (2π)
d
2

e
−1

2

(
x−µy
σ

)2

.

Likelihood

logL(θ) =

n∑
i=1

logPθ(X = xi) =

n∑
i=1

log

K∑
y=1

Pθ(Y = y)Pθ(X = xi|Y = y) = . . .

Maximize!

– This is non convex.

– There are k! copies of each minimum (local or global).

– Conjugate gradients or Newton works.
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Expectation-Maximization

Fortunately there is a simpler solution.
– We observe X
– We do not observe Y .
– Things would be simpler if we knew Y .

Decomposition
– For a given X, guess a distribution Q(Y |X).
– Regardless of our guess, logL(θ) = L(Q, θ)−M(Q, θ) +D(Q, θ)

L(Q, θ) =

n∑
i=1

K∑
y=1

Q(y|xi) logPθ(xi|y) Gaussian log-likelihood

M(Q, θ) =

n∑
i=1

K∑
y=1

Q(y|xi) log
Q(y|xi)
Pθ(y)

KL divergence D(PY ‖QY |X)

D(Q, θ) =

n∑
i=1

K∑
y=1

Q(y|xi) log
Q(y|xi)
Pθ(y|xi)

KL divergence D(QY |X‖PY |X)
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Expectation-Maximization

Remember Lloyd’s algorithm for K-Means?

L-M
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E-Step Soft assignments qik ← λk e
−1

2

(
xi−µk
σ

)2

M-Step Update parameters µk ←
∑
i qik xi∑
i qik

. λk ←
∑
i qik∑
iy qiy

.
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Simple Gaussian mixture (3)

Relation with K-Means

– Like K-Means but with soft assignments.

– Limit to K-Means when σ → 0.

In practice

– Clearly slower than K-Means.

– More robust to local minima.

– Annealing σ helps.

Subtleties

– Relation between σ and the number of clusters. . .

– Relation between EM and Newton.
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Next Lecture

Expectation Maximization in general

– EM for general Gaussian Mixtures Models.

– EM for all kinds of mixtures.

– EM for dealing missing data.
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