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Agenda

Goals

Classification, clustering, regression, other.

Representation

Parametric vs. kernels vs. nonparametric
Probabilistic vs. nonprobabilistic

Linear vs. nonlinear

Deep vs. shallow

Capacity Control

Explicit: architecture, feature selection
Explicit: regularization, priors

Implicit: approximate optimization
Implicit: bayesian averaging, ensembles

Operational
Considerations

LLoss functions
Budget constraints
Online vs. offline

Computational
Considerations

Exact algorithms for small datasets.
Stochastic algorithms for big datasets.
Parallel algorithms.
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Introduction

Clustering
Assigning observations into subsets with similar characteristics.

Applications

— medecine, biology,

— market research, data mining
— image segmentation

— search results

— topics, taxonomies

— communities

Why is clustering so attractive?
— An embodiment of Descartes’ philosophy

“Discourse on the Method of Rightly Conducting One’s Reason’ :
“ ..divide each of the difficulties under examination
...as might be necessary for its adequate solution.”
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Summary

1. What is a cluster?
2. K-Means
3. Hierarchical clustering

4. Simple Gaussian mixtures
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What is a cluster?

Bayes decision boundary

Two neatly separated classes leave a trace in P{X}.
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Input space transformations

prdbvossfann il

Input space is often an arbitrary decision.
For instance: camera pixels versus retina pixels.

What happens if we apply a reversible transformation to the inputs?
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Input space transformations

The Bayes optimal decision boundary moves with the transformation.
The Bayes optimal error rate is unchanged.
The neatly separated clusters are gonel

Bayes decision boundary

Clustering depends on the arbitrary definition of the input space!
This is very different from classification, regression, etc.
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K-Means

The K-Means problem
— Given observations z;...x,, determine K centroids wy...w;

n
that minimize the distortion C'(w) = kain |z — wy||?.
i=1

Interpretation
— Minimize the discretization error.

Properties

— Non convex objective.

— Finding the global minimum is NP-hard in general.
— Finding acceptable local minima is surprisingly easy.
— Initialization dependent.
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Offline K-Means

Lloyd’s algorithm

initialize centroids wyg

repeat
- assign points to classes:

Vi, s; «— argmin|x; — wg||*. Sp — {i : s; = k}.
k

- recompute centroids:

1
Vk. wi «— arg min r: — w|? = €T;.
1E€SL 1€S5k

until convergence.
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Lloyd’s algorithm — Illustration

O O
0O O Initial state:
O
U ’ . — Squares = data points.
O O — Circles = centroids.
O O
OO0
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Lloyd’s algorithm — Illustration

1. Assign data points to clusters.
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Lloyd’s algorithm — Illustration
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2. Recompute centroids.
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Lloyd’s algorithm — Illustration

Assign data points to clusters. ..
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Why does Lloyd’s algorithm work?

Consider an arbitrary cluster assignment s;.

n n n
: % 2 2 - 2
Clw) = Zm];ﬂH%'—wkH = > i —wgll? = >l — ws)| — min [[z; — wg|
1=1 a=1 P a=1 P
,C(S,w) D(S,ZU)ZO

1. Change s; to minimize D leaving C(w) unchanged.

I @ 2. Change w; to minimize L. Meanwhile ‘D can only increase.
- @
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Online K-Means

MacQueen’s algorithm

initialize centroids wy and ng = 0.

repeat
- pick an observation x; and determine cluster

s¢ = arg min ||z — wy]|?.
k
- update centroid sy:

Nng, < Ng, + 1. wg, «— wg, + n—St(wt — fwst).

until satisfaction.

Comments
— MacQueen's algorithm finds decent clusters much faster.

— Final convergence could be slow. Do we really care?
— Just perform one or two passes over the randomly shuffled observations.
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Why does MacQueen’s algorithm work?

Explanation 1: Recursive averages.

1 1
— Let uy, = — Z x;. Then up =up_1+ —(Tn — Up—1).
n— n

Explanation 2: Stochastic gradient.
— Apply stochastic gradient to C'(w) = % n_ miny ||x; — wgl|?:

Wgy < Wsy, T Vt (wt - wSt)

Explanation 3: Stochastic gradient 4+ Newton.
— The Hessian H of C(w) is diagonal and contains the
fraction of observations assigned to each cluster.
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Example: Color quantization of images

Problem
— Convert a 24 bit RGB image into a indexed image

with a palette of K colors.

Solution

— The (r,g,b) values of the pixels are the observations z;

— The (r,g,b) values of the K palette colors are the centroids wy.
— Initialize the w; with an all-purpose palette

— Alternatively, initialize the w; with the color of random pixels.
— Perform one pass of MacQueen’'s algorithm

— Eliminate centroids with no observations.

— You are done.
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How many clusters?

Rules of thumb ?
— K =10, K = +/n, ...

The Elbow method 7

— Measure the distortion on a validation set.

— The distortion decreases when k increases.

— Sometimes there is no elbow, or several elbows
— Local minima mess the picture.

Rate-distortion

— Each additional cluster reduces the distortion.
— Cost of additional cluster vs. cost of distortion.
— Just another way to select XK.

Conclusion
— Clustering is a very subjective matter.

/This is the elbow
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Hierarchical clustering

Adglomerative clustering

— Initialization: each observation is its own cluster.

— Repeatedly merge the closest clusters

— single linkage D(A,B)= min d(xz,v)
rx€A, yeB

— complete linkage D(A,B) = max d(x,y)
r€A, yeB

— distortion estimates, etc.

Divisive clustering

— Initialization: one cluster contains all observations.
— Repeatedly divide the largest cluster, e.g. 2-Means.

— Lots of variants.
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K-Means plus Agglomerative Clustering

Algorithm

— Run K-Means with a large K.

— Count the number of observation for each cluster.

— Merge the closest clusters according to the following metric.

Let A be a cluster with ny members and centroid wy.

Let B be a cluster with ng members and centroid wpg.

The putative center of AUB is wyp = (nqwq + nywp)/(ng +np).
Quick estimate of the distortion increase:

dAB) = Y lle—wapll’ = llz —wal* =) llz —wpl|

r€EAUB r€A reB
= ny lwag —wapll* +npllwg — wapl
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Dendogram
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Simple Gaussian mixture (1)

Clustering via density estimation.
— Pick a parametric model Py(X).
A — Maximize likelihood.

Pick a parametric model
— There are K components

® X ° : ]
° o.. — To generate an observation:
oo o a.) pick a component k
®e®e with probabilities A; ... A\
:‘. ‘...0 b.) generate z from component k
® o0 with probability N (u;, o).

» Notes
— Same standard deviation o (for now).
— That's why I write “Simple GMM” .
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Simple Gaussian mixture (2)

Parameters: 0 = (A, i1, .., A, Jbg)

Model: FyY =y)=)\,. DPX=zY=y) =

Likelihood

n n K
log L(A) = Y log Py(X =z;) =Y log» Py(Y =y)Py(X = ;Y =y) = ...
i=1 i=1  y=1

Maximize!

— This is non convex.

— There are k! copies of each minimum (local or global).
— Conjugate gradients or Newton works.
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Expectation-Maximization

Fortunately there is a simpler solution.
— We observe X

— We do not observe Y.

— Things would be simpler if we knew Y.

Decomposition

— For a given X, guess a distribution Q(Y|X).
— Regardless of our guess, log L(0) = L(Q,0) — M(Q,0) + D(Q, 0)

n
0) = > Y Qlylz;)log Py(x;ly)  Gaussian log-likelihood

1= 1y 1
ZZQ y|x;) log Qlyli KL divergence D(Py||Qy|x)
1= 1y 1 ( )

= ZZQ(M:@) log ]%((Z‘\xx?) KL divergence D(Qy x| Pyx)

i=1 y=1
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Expectation-Maximization

Remember Lloyd’s algorithm for K-Means?

log L
D 20 ‘
AN

log L log L
D =0 1/
L-M L-M L-M

2. Change uy, A, to maximize L-M. Meanwhile D can increase.

1. Change Q to minimize D leaving log L unchanged.

_l(xz_“k)Q
E-Step Soft assignments Qi — e 2\ °

> ik T A > i Qik
Zi dif Zzy iy
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Simple Gaussian mixture (3)

Relation with K-Means
— Like K-Means but with soft assignments.
— Limit to K-Means when ¢ — 0.

In practice

— Clearly slower than K-Means.
— More robust to local minima.
— Annealing o helps.

Subtleties

— Relation between ¢ and the number of clusters. ..

— Relation between EM and Newton.
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Next Lecture

Expectation Maximization in general

— EM for general Gaussian Mixtures Models.
— EM for all kinds of mixtures.
— EM for dealing missing data.
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