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Today’s Agenda

Goals Classification, clustering, regression, other.

Representation

Parametric vs. kernels vs. nonparametric

Probabilistic vs. nonprobabilistic

Linear vs. nonlinear

Deep vs. shallow

Capacity Control

Explicit: architecture, feature selection

Explicit: regularization, priors

Implicit: approximate optimization

Implicit: bayesian averaging, ensembles

Operational

Considerations

Loss functions

Budget constraints

Online vs. offline

Computational

Considerations

Exact algorithms for small datasets.

Stochastic algorithms for big datasets.

Parallel algorithms.

Léon Bottou 2/25 COS 424 – 2/25/2010



Introduction

Direct Method

(1) Minimize a loss that is direcly related to our goal.

Probabilistic Method

(1) Estimate probabilities.

(2) Use estimated probabilities to implement our goal(s).

Drawbacks

– Estimating probabilities may be more difficult than solving our goal.

– Additional steps bring new opportunities for error.

Benefits

– Improved ability to reason about the data.

– Multiple goals.
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Summary

1. Estimating probabilities and densities.

2. Maximum Likelihood

3. Comparing estimators

4. Classical approach

– Unbiased estimators

5. Bayesian approach

– An alternate view on probabilities

– Priors and posteriors

– Averaging

6. Putting them together!
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Estimating a probability

Estimate p = PX{X ∈ A} given a sample x1, . . . , xn.

Represent the possible samples

– Independent and identically distributed random variables

P {X1, . . . , Xn} = PX{X1}PX{X2} . . .PX{Xn}

Law of large numbers, etc.

– For instance with the CLT: X̄ =
1

n

n∑
i=1

1I{Xi ∈ A} ∼ N

(
p,

√
p(1− p)

n

)

therefore P

{∣∣ X̄ − p ∣∣ ≤ 2

√
p(1− p)

n

}
≈ 95% etc.

Notes:

– The 95% mean 95% of the possible samples.

– Estimating a single probability works nicely.
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Estimating a cumulative distribution

Estimate F (x) = PX{X ≤ x} given a sample x1, . . . , xn.

Represent the possible samples

– Independent and identically distributed random variables

P {X1, . . . , Xn} = PX{X1}PX{X2} . . .PX{Xn}

Glivenko-Cantelli

– Let Fn(x) =
1

n

n∑
i=1

1I(X ≤ x).

– Then P
{

sup
x∈R
|Fn(x)− F (x)| > ε

}
≤ Ce−2nε2

Notes:

– This is not an obvious result.

– Estimating a cumulative distribution works nicely.
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Estimating a density

Notes:

– The density is the derivative of the cumulative.
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Estimating a density

Notes:
– The density is the derivative of the cumulative.
– Estimating a density is nearly impossible.
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A convenient shortcut

Assume we know the distribution up to a few parameters θ.

Discrete Continuous

Parametric form P {X = x} = fθ∗(x) p(x) = fθ∗(x)

Normalization
∑
x fθ(x) = 1

∫
p(x) dx = 1

Likelihood

– L(θ;x1 . . . xn)
∆
=

n∏
i=1

fθ(xi) i.e. the probability of x1 . . . xn

if fθ was the real distribution.

Maximum Likelihood Estimator (MLE)

– θ̂
∆
= arg max

θ
L(θ;x1 . . . xn) = arg max

θ

n∑
i=1

log fθ(xi)
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MLE for the Bernoulli distribution

– X takes value 1 with probability p and value 0 with probability 1− p.
– Estimate p from a sample x1, . . . , xn with n1 ones and n0 zeroes.

Likelihood

– L(p) = pn1 (1− p)n0

– logL(p) = n1 log(p) + n0 log(1− p).

Maximum Likelihood

–
d logL

dp
=
n1

p
− n0

1− p
= 0 gives p̂ =

n1

n1 + n0
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MLE for the Normal distribution

– Assume X ∼ N (µ, σ).
– Estimate µ and σ from a sample x1, . . . , xn.

Likelihood
– Let γ = 1/σ.

– L(µ, σ) =

n∏
i=1

γ√
2π

e−
1
2γ

2(xi−µ)2

– logL(µ, σ) = n log γ − γ2

2

n∑
i=1

(xi − µ)2

Maximum Likelihood

–
d logL

dµ
=

n∑
i=1

(xi − µ) = 0 gives µ =
1

n

n∑
i=1

xi

–
d logL

dγ
=
n

γ
− γ

n∑
i=1

(xi − µ)2 = 0 gives σ2 =
1

n

n∑
i=1

(xi − µ)2

Léon Bottou 11/25 COS 424 – 2/25/2010



Why does MLE work

Kullback-Leibler divergence

– Between discrete distributions: D(P‖Q) =
∑

P (x) log(P (x)/Q(x))

– Between probability densities: D(p‖q) =

∫
p(x) log(p(x)/q(x)) dx

The KL-divergence measures how p differs from q

– Since log(x) ≤ x− 1, D(p‖q) ≥
∫
p(x)

[
q(x)

p(x)
− 1

]
dx =

∫
p(x) dx−

∫
q(x) dx = 1− 1 = 0.

– D(p‖q) = 0 if and only if p = q.

MLE and KL-divergence

– Observe
1

n
logL(θ)

n→∞−→
∫
p(x) log fθ(x) dx = Constant−D(p‖fθ)

– Therefore MLE approaches arg min
θ

D(p‖fθ).

– Same when p(x) does not have the assumed parametric form.
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MLE for classification

Generative

– Let pθ(x, y) estimate P {X | Y = y}.
– Required normalization: ∀y, θ,

∫
pθ(x, y)dx = 1.

– Maximum likelihood: max
1

n

n∑
i=1

log pθ(xi, yi).

Discriminative

– Let pθ(x, y) estimate P {Y = y | X}.
– Required normalization: ∀x, θ,

∑
y pθ(x, y) = 1.

– Maximum likelihood: max
1

n

n∑
i=1

log pθ(xi, yi).

Only the normalization differs!
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MLE for binary classification

Let pθ(x) estimate P {Y = +1 | X}.

The log-likelihood is logL(θ) =
1

n

n∑
i=1

{
log(pθ(xi)) if yi = +1
log(1− pθ(xi)) if yi = −1

Observe logL(θ) = − 1

n

n∑
i=1

log
(

1 + e−yizθ(x)
)

with zθ(x) = log
pθ(x)

1− pθ(x)
.

We recover a classifier with the log loss!

Conversely, when using the log-loss to train a classifier f (x),

the quantities ef(x)

1+ef(x) and 1
1+ef(x) approximate P {Y = ±1 | X}.
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Comparing estimators

Estimate E [X ] given a sample x1, . . . , xn.

E [X] ≈
1

n

n∑
i=1

xi. E [X] ≈ 3 !

Jane believes in hard labor. Joe does not.

Is Jane’s answer always better than Joe’s ?
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Comparing estimators

Estimate E [X ] given a sample x1, . . . , xn.

E [X] ≈
1

n

n∑
i=1

xi. E [X] ≈ 3 !

Jane believes in hard labor. Joe does not.

Is Jane’s answer always better than Joe’s ?

– There are probability distributions P {X} whose expectation is 3.

– For these, Joe is exactly right (because he is lucky.)

– And Jane is likely to answer 2.98 or 3.01. . .

Can we at least say that Jane is right more often?

– Only if we can say which distributions are more likely to occur. . .
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A philosophical debate

Bayesian: Let us just fix a probability distribution on the possible
probability distributions of X. We’ll call that the prior.

Classical: There is no such thing. You can only count occurrences of X.
You cannot count probability distributions.

Bayesian: Does it matter? Let’s just say that the prior represents my a
priori beliefs about the problem.

Classical: Where did you get these beliefs from? Are you telling me that
the probability distribution of X is partly known beforehand?
You are cheating.

Bayesian: Well, my beliefs could be right or wrong. The important thing
is to be consistent.

Classical: You might be consistently wrong.

Bayesian: Maybe I’ll change my mind when I see enough data.
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Classical approach: no lucky Joes.

We want to estimate µ ∈ R that depends on the distribution of X.

We do that with an estimator µ̂(x1, x2, . . . , xn).

Unbiased estimator

E [ µ̂(X1, . . . , Xn) ] = µ regardless of the distribution of X.

Examples

– x̄ = 1
n

∑
xi is an unbiased estimator of µ = E [X ].

– v̄ = 1
n−1

∑
(xi − x̄)2 is an unbiased estimator of σ2 = Var(X).

because E
[∑

(Xi − X̄)2
]

= E
[∑(

(Xi − µ)− (X̄ − µ)
)2
]

= E
[∑

(Xi = µ)2 − 2(X̄ − µ)
∑

(Xi − µ) + n(X̄ − µ)2
]

= nσ2 − nE
[
(X̄ − µ)2

]
= nσ2 − nE

[(∑ Xi−µ
n

)2
]

= nσ2 − 1
nE [
∑

Var(Xi − µ)] = (n− 1)σ2
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Classical approach: no lucky Joes.

Best unbiased estimator

– There are optimal unbiased estimators that are uniformly better

than all other unbiased estimators.

– Deriving the best unbiased estimator is often very difficult.

– MLE is only asymptotically unbiased and asymptotically efficient.

Is unbiasedness a good idea?

– What if we actually have a priori information ?

– A priori information can take subtle forms.

Stein’s paradox (1961)

– The batting averages yi of different players are independent.

– Best unbiased estimators: ŷi = #hitsi/#batsi
– Let ȳ be a grand average and c an appropriate shrinking factor.

– Biased estimators: x̂i = ȳ + c(ŷi − ȳ).

– On average over all players, x̂ is uniformly better than ŷ .
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Bayesian approach: no unknown probability.

Probabilities in classical statistics

– Probabilities P {. . . } represent the unknown.

“Unknown probability distribution P {X}”
“Discover something about P {X} using a sample”

“Regardless of the actual distribution. . . ”

– Likelihoods pθ(x) behave like probabilities but represent models.

Probabilities in Bayesian statistics

– Probabilities P {. . . } represent our beliefs.

– There are no unknown probabilities: we know what our beliefs are!

– The classical likelihood pθ(x) is similar to the Bayesian P {X | θ}.
– We can have beliefs P {θ} about θ.

Both are unfortunately represented with the same letter P.
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Learning with Bayes rule.

Prior information

– The model: P {X | θ}.
– The prior distribution: P {θ}.

Posterior distribution

– We observe some data D = {x1, x2, . . . , xn}.
– Applying Bayes rule:

P {θ | D} = P {D | θ} P {θ} /P {D}
∝ P {D | θ} P {θ}
∝ P {X1 | θ} P {X2 | θ} . . .P {Xn | θ} P {θ}

Averaging

– Then P {X | D} =

∫
P {X | θ} P {θ | D} dθ
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Bayes for the Bernoulli distribution

Prior information

– The model: P {X = x | θ} =

{
θ if x = 1
1− θ if x = 0

– The prior distribution: P {θ} ∝ θα−1(1− θ)β−1 for α, β > 0.

Posterior distribution

– We observe D = {x1, x2, . . . , xn} with n1 ones and n0 zeroes.

– Applying Bayes rule:

P {θ | D} ∝ P {X1 | θ} P {X2 | θ} . . .P {Xn | θ} P {θ}
∝ θn1+α−1(1− θ)n0+β−1
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Bayes for the Bernoulli distribution (2)

Useful special functions

– Gamma function: Γ(x) = (x− 1)Γ(x− 1).

– Beta function: B(x, y) =
∫ 1

0 t
x−1(1− t)y−1dt =

Γ(x)Γ(y)
Γ(x+y)

Averaging

– P {X = +1 | D} ∝ B(n1 + α + 1, n0 + β) = n1+α
n1+α+n0+βB(n1 + α, n0 + β)

– P {X = −1 | D} ∝ B(n1 + α, n0 + β + 1) = n0+β
n1+α+n0+βB(n1 + α, n0 + β)

Conclusion: P {X = 1 | D} =
n1 + α

n1 + α+ n0 + β

– Same as MLE but initialize counts to α, β > 0.

– Large α, β bias the probability towards α/(α + β).

– The influence of the prior vanishes when n increases.

– Prior is a capacity control device.
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Remarks about Bayesian statistics

Relation to MLE

– MLE always has an uniform prior

– MLE takes θ = arg max P {θ | D} instead of averaging.

Computation of the Bayesian averages
– Analytical: Conjugate priors make the derivations less hairy.
– Approximate: Laplace approximation summarizes the posterior.
– Numerical: Markov-Chain Monte Carlo and variants.
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Putting things together

Lets use different letters:

– Q is the classical (unknown) probability,

– P is the Bayesian probability (or the classical likelihood.)

The MLE question: P {X | θ = arg max P {θ | D}} → Q{X}?
i.e. Is MLE consistent?

– With discrete probabilities: yes.

– With continuous probabilities: often.

The Bayesian question: P {X | D} → Q{X}?
i.e. Do the priors vanish when n increases?

– With discrete probabilities: yes.

– With continuous probabilities: more often than MLE.
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