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Today’s Agenda

Goals

Classification, clustering, regression, other.

Representation

Parametric vs. kernels vs. nonparametric
Probabilistic vs. nonprobabilistic

Linear vs. nonlinear

Deep vs. shallow

Capacity Control

Explicit: architecture, feature selection
Explicit: regularization, priors

Implicit: approximate optimization
Implicit: bayesian averaging, ensembles

Operational
Considerations

LLoss functions
Budget constraints
Online vs. offline

Computational
Considerations

Exact algorithms for small datasets.
Stochastic algorithms for big datasets.
Parallel algorithms.
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Introduction

Direct Method
(1) Minimize a loss that is direcly related to our goal.

Probabilistic Method
(1) Estimate probabilities.
(2) Use estimated probabilities to implement our goal(s).

Drawbacks

— Estimating probabilities may be more difficult than solving our goal.
— Additional steps bring new opportunities for error.

Benefits

— Improved ability to reason about the data.

— Multiple goals.
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Summary

1. Estimating probabilities and densities.
2. Maximum Likelihood
3. Comparing estimators

4. Classical approach
— Unbiased estimators

5. Bayesian approach
— An alternate view on probabilities
— Priors and posteriors
— Averaging

6. Putting them together!
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Estimating a probability

Estimate p=Px{X € A} given a sample z1,..., .

Represent the possible samples
— Independent and identically distributed random variables

P{X],....Xp} = Px{X1} Px{Xo}.. . Py{X,}

> ] — 1 —
— For instance with the CLT: X = —) I{X;€ A} ~ N <p7 \/p( p)
" n

Law of large numbers, etc.

_ 1 _
thereforeIP{Xp]<2\/p( p)}%%% etc.
n

Notes:
— The 95% mean 95% of the possible samples.

— Estimating a single probability works nicely.
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Estimating a cumulative distribution

Estimate F(z) =Px{X <z} given a sample x1,...,zy.

Represent the possible samples
— Independent and identically distributed random variables

P{X],....Xp} = Px{X1} Px{Xo}.. . Py{X,}

GIivenko—Cante}lli
1
— Let F = — X < a).
n(@)=- §Hj (X <o)

— Then P{sup |Fr(x) — F(z)| > 6} < o= 2n€’
reR

Notes:
— This is not an obvious result.
— Estimating a cumulative distribution works nicely.
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Estimating a density

AR AKX XXX X X 2

Notes:
— The density is the derivative of the cumulative.
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Estimating a density

X XX KXKXAXX XK AXX X X X X

Notes:
— The density is the derivative of the cumulative.

— Estimating a density is nearly impossible.
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A convenient shortcut

Assume we know the distribution up to a few parameters 6.

Discrete Continuous
Parametric form P{X =z} = fy«(x) p(z) = fo«(x)
Normalization > o Jolz) =1 [ p(z)de =1
Likelihood .
— L(0;x1...xp) 2 er(ﬂi‘z') i.e. the probability of z;...x,
1=1 if fy was the real distribution.

Maximum Likelihood Estimator (MLE)

n
—0 2 argmax L(0;xq1...xp) = arg maleog fo(x;)
0 0
1=1
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MLE for the Bernoulli distribution

— X takes value 1 with probability p and value 0 with probability 1 —p

— Estimate p from a sample z¢,...,z, With ny ones and ng zeroes.
Likelihood
= L(p) =p" (1 —p)"

— log L(p ) nilog(p) + nglog(l — p).

Maximum Likelihood

dlog L n
- e N LU gives p = !
dp p 1-p n1 + ng
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MLE for the Normal distribution

— Assume X ~ N(u, o).

— Estimate py and o from a sample zy,...,zy,.
Likelihood
— Let v=1/0.

n

Yo =52 p)?
— L(p,0) = e 27 \Ti—H
(1, 0) ZH1 or
7 o

—log L(p,0) = nlogy — > (w; — p)°

1=1

Maximum le_ikelihood

dlog L . 1 &
- = (x;—p)=0 gives p=-=—>» =z
v . n -
1=1 1=1
dlogsl. n <& | s 1L 5
- =) wi—p) =0 gives o =—3 (z;—p)
R i=1
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wWhy does MLE work

Kullback-Leibler divergence
— Between discrete distributions: D(P||Q) = >~ P(x)log(P(z)/Q(x))

— Between probability densities:  D(pllq) = /p(:z:) 10g(p(:1:)/q(:1:))d:zc

The KL-divergence measures how p differs from gq

— Since log(z) <x —1, D(pllq) > /p(x) L%—l] da::/p(x)da:—/q(x)da::1—1:().
— D(pllq) =0 if and only if p=g.

MLE and KL-divergence
1 —

— Observe —logL(f) —= /p(a:') log fg(x) dx = Constant — D(p|| fy)
n

— Therefore MLE approaches argmin D(p|| fp)-
0

— Same when p(z) does not have the assumed parametric form.
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MLE for classification

Generative
— Let py(z,y) estimate P{X | Y =y}.
— Required normalization: Yy, 0, [ py(z,y)dz =1.

. . 1
— Maximum likelihood: maxﬁzllogpg(aji,yi).
1=

Discriminative
— Let py(z,y) estimate P{Y =y | X}.
— Required normalization: V.0, ) pg(z.y) = 1.

. . 1
— Maximum likelihood: maxﬁzllogpg(xi,yi).
1=

Only the normalization differs!
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MLE for binary classification

Let py(x) estimate P{Y =+1| X}.

1
The log-likelihood is log L(6) = EZ 0e(1 — pa(e:)) if 4 — 1
(] 1

n .
{ log(pg(z;))  if y; = +1
1=1

1 < |
Observe log L(0) = — = log (1 + e %)) with zy(z) = log py()
n 0
i=1

We recover a classifier with the log loss!

Conversely, when using the Iog—loss to train a classifier f(x),

ef (@)
the quantities 1+ef( 5 and n ef( 5 approximate P{Y = £1| X}.
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Comparing estimators

Estimate E [ X] given a sample zq,...,x),.

E[X]~ 3!

Jane believes in hard labor. Joe does not.

Is Jane’s answer always better than Joe’s?

Léon Bottou 15/25 COS 424 — 2/25/2010



Comparing estimators

Estimate E [ X] given a sample zq,...,x),.
1 n
— = E[X] ~ 3
n i—1

Jane believes in hard labor. Joe does not.

Is Jane’s answer always better than Joe’s?

— There are probability distributions P{X} whose expectation is 3.
— For these, Joe is exactly right (because he is lucky.)

— And Jane is likely to answer 2.98 or 3.01. ..

Can we at least say that Jane is right more often?
— Only if we can say which distributions are more likely to occur. ..
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A philosophical debate

Bayesian:

Classical:

Bayesian:

Classical:

Bayesian:

Classical:

Bayesian:

Let us just fix a probability distribution on the possible
probability distributions of X. We’ll call that the prior.

There is no such thing. You can only count occurrences of X.
You cannot count probability distributions.

Does it matter? Let’s just say that the prior represents my a
priori beliefs about the problem.

Where did you get these beliefs from? Are you telling me that
the probability distribution of X is partly known beforehand?
You are cheating.

Well, my beliefs could be right or wrong. The important thing
is to be consistent.

You might be consistently wrong.

Maybe I'll change my mind when I see enough data.

Léon Bottou
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Classical approach: no lucky Joes.

We want to estimate 1 € R that depends on the distribution of X.
We do that with an estimator p(xq,zo,...,xp).

Unbiased estimator
E[a(Xy,...,Xn) ] = p regardless of the distribution of X.

Examples
— 7 =13"2; is an unbiased estimator of y = E[X].
— v =—-3"(x; — x)> is an unbiased estimator of 0% = Var(X).

because E[>(X;— X)?| =E [Z ((Xi—p) = (X — M>)2J
= E[33(Xi=p)* — 2(X — p) 2(Xi — p)
= no?—nE [(X — p)?| = no?—nE [(Z X’;;”)
= no’ — B[} Var(X; —p)] = (n—1)

~
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Classical approach: no lucky Joes.

Best unbiased estimator

— There are optimal unbiased estimators that are uniformly better
than all other unbiased estimators.

— Deriving the best unbiased estimator is often very difficult.

— MLE is only asymptotically unbiased and asymptotically efficient.

Is unbiasedness a good idea?
— What if we actually have a priori information ?
— A priori information can take subtle forms.

Stein’s paradox (1961)

— The batting averages y; of different players are independent.

— Best unbiased estimators: y; = #hits;/#bats;

— Let y be a grand average and c an appropriate shrinking factor.
— Biased estimators: z; =y + c(y; — ).

— On average over all players, z is uniformly better than y.
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Bayesian approach: no unknown probability.

Probabilities in classical statistics

— Probabilities P{...} represent the unknown.
“Unknown probability distribution P{X}"
“Discover something about P{X} using a sample”
“Regardless of the actual distribution. ..”

— Likelihoods py(z) behave like probabilities but represent models.

Probabilities in Bayesian statistics

— Probabilities P{...} represent our beliefs.

— There are no unknown probabilities: we know what our beliefs are!
— The classical likelihood py(x) is similar to the Bayesian P{X | 6}.

— We can have beliefs P {0} about 6.

Both are unfortunately represented with the same letter P.
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Learning with Bayes rule.

Prior information

— The model: P{X | 6}.

— The prior distribution: P{6}.

Posterior distribution
— We observe some data D = {x{,x9,...,2,}.
— Applying Bayes rule:

Averaging

P{§| D}

X
X

P{D| 0} P{0} /P{D}
P{D| 0} P{0;

P{X|| 0} P{Xo| 0}...P{X,| 6} P{0}

— Then P{X D}:/IP{X\ Y P{0| D} do

Léon Bottou
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Bayes for the Bernoulli distribution

Prior information
_ v if x =1
— The model: P{X =z | 0} = 0 ifa—0

— The prior distribution: P {0} o 0 L1 —0)"~1 for a, 3 > 0.

Posterior distribution
— We observe D = {z,x9,...,2,} with ny ones and ng zeroes.

— Applying Bayes rule:

P{O| D} « P{X,| 0} P{Xy| 0. P{X,| 0} P{0}
~ 9n1+a—1(1 - e)noJrﬁ—l
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Bayes for the Bernoulli distribution (2)

Useful special functions
— Gamma function: I'(z) = (z — 1)['(z — 1).
— Beta function: B(x,y) = [, t*~1(1 — )V~ ldt = FIEEC:C)E;Q))

Averaging
— P{X =+1| D} oc B(ny + o+ Lng + ) = 5dieg Blny + a,ng + )

— P{X = 1| D} & B(ny +a,ng+ B+ 1) = =" B(ny + a,ng + 9)

niy + «
ni+a+ng+ 0

Conclusion: P{X =1| D} =

— Same as MLE but initialize counts to «a, (3 > 0.
— Large «, 3 bias the probability towards a/(a + ().
— The influence of the prior vanishes when n increases.

— Prior is a capacity control device.
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Remarks about Bayesian statistics

Relation to MLE
— MLE always has an uniform prior
— MLE takes 0 = argmaxP {60 | D} instead of averaging.

Computation of the Bayesian averages
— Analytical: Conjugate priors make the derivations less hairy.

— Approximate: Laplace approximation summarizes the posterior.
— Numerical: Markov-Chain Monte Carlo and variants.
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Putting things together

Lets use different letters:
— @Q is the classical (unknown) probability,
— P is the Bayesian probability (or the classical likelihood.)

The MLE question: P{X | § = argmaxP {0 | D}} — Q{X}?
i.e. Is MLE consistent?

— With discrete probabilities: yes.

— With continuous probabilities: often.

The Bayesian question: P{X | D} — Q{X}?
i.e. Do the priors vanish when n increases?
— With discrete probabilities: yes.
— With continuous probabilities: more often than MLE.
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