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1 Machine learning mix and match

Building a machine learning system involves mixing and matching many different compo-
nents. Slide 2 presents a comprehensive list of different components depending on different
aspects of the problems. We will revisit this slides many times in the future. Firstly, there
are many possible goals we might want to achieve. Last time, our goal was regression:
fitting the data with some curves. The second aspect is representation. We looked at para-
metric models last time. There are also nonparametric models when we do not want to tune
the parameters. The models we looked at were also nonprobabilistic as opposed to proba-
bilistic ones because the models were just functions of the data without any probabilistic
interpretation. The models can also be linear or nonlinear, with deep or shallow represen-
tation. The next aspect is capacity control. As we have talked about in the past, in order
to use better models, we have to pay with either more data or better data. Regularization
is another thing we already talked about when we add a quadratic term to the objective
function in least square fitting. There are also operational considerations associated with
the task we want to solve. So far we have only looked at offline problems where we have all
the training data available at the beginning and the model can train on all of them at once.
In online problems, the data come one at a time and the model has to adjust to the data
over time. Lastly, we have computational considerations. For small datasets, we can use
exact algorithms. For big datasets, we want to use stochastic algorithms. For even bigger
datasets, we use parallel algorithms. Today, we will look at classification tasks with both
parametric and nonparametric models. We will also talk about various loss functions.

2 Classification

Classification, a.k.a. pattern recognition, clustering, is the task of associating a pattern
x ∈ X and a class y ∈ Y. Slide 5 gives a list of examples of classification tasks. The tasks
can be binary classification, multiclass classification, multilabel classification, or sequence
recognition. We will talk about binary, multiclass, and multilabel classification today. We
will talk more about sequence recognition later when we discuss hidden Markov models.

3 Probabilistic model

Let X and Y the the random variables representing the patterns and the classes. There
are two approaches to model the generation of a pattern of a particular class. Slide 6
presents two diagrams of these two approaches. The first approach is that there is a pattern
generator and a class labeler. The pattern generator first generates a pattern, such as a
picture of a person. Then the labeler generates a class, such as the gender of the person
in the picture, based on the information from the picture. This approach is summarized
as P (X,Y ) = P (X) · P (Y |X). The second approach is as follows. First, a class generator
generates a class, e.g. gender of a person. We also have many pattern generators, one per



class. Once a class is generated, we select the output of the corresponding generator and
output the pattern. This approach is summarized as P (X,Y ) = P (Y ) · P (X|Y ).

4 Bayes decision theory

Next we look at Bayes decision theory. Slide 7 gives a derivation of Bayes optimal decision
rule and error rate. Note that in the derivation, we use I(E), the indicator function of an
event E: it is 1 when E happens and 0 otherwise. Bayes decision rule is the best possible
classifier since for each x, we choose the best possible class for it that minimize the error
probability. A visualization of this fact is described in slide 8, where we look at the diagram
of the joint density of patterns and classes.

However, the theory assumes we know the probability distribution while in practice, we
only have a finite amount of data. What we can do is either approximating the optimal
Bayes classifer, picking a function from a parameterized family that minimizes the empirical
error, or determining the class of x based on the classes of nearest neighbors of x.

5 Nearest neighbors

Let d(x, x′) be a distance on patterns. For a pattern x, we can assign to x the class of the
closest training example (1NN). Alternatively, we can look at the classes of the k nearest
neighbors and let them vote (kNN). There are also variants with weighted votes smoothed
by the distance.

When the patterns are on a plane, we can draw the bisectors between pairs of points to
divide the space into cells so that all patterns within each cell are assigned the same class as
the example in that cell. A similar process can be done in any space other than the plane.
This is called Voronoi tesselation.

Interestingly there is a theorem by Cover and Hart that says the error of 1NN is bounded
by twice the Bayes optimal error rate. Slide 12 has the statement and the proof of this
theorem.

Let η(x) = P{Y = +1|X = x}. As we increases the number of neighbors, the error rate
approaches the optimal curve, provided that η(xknn(x)) ≈ η(x). If there is not enough data,
the kth nearest neighbor of x can be far from x and this condition cannot hold. Therefore,
in order to increase k, we need more data. Thus, k is a capacity parameter.

There are various ways to improve the implementations of kNN, with data structures
and pruning techniques for finding nearest neighbors. Slide 14 describes some of them.

The choice of distance measure also affects the algorithm. When using Euclidean dis-
tance, it is often unnecessary to compute the square root. However, when using the triangle
inequality to prune the search space, the square root is required. A variant of Euclidean
distance is Mahalanobis distance, which is scaled by the inverse covariance matrix:

d(x, x′) = (x− x′)TA(x− x′)

where A = Σ−1 or A = (Σ + εI)−1 since Σ is not necessarily invertible.
Another technique is dimensionality reduction. We project the patterns to a subspace

that retains most of the variance. The details are described in slide 15.
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6 Discriminant function

Next we discuss the discriminant functions, which is used in binary classification. Given
a function fw, pattern x is assigned the class sign(fw(x)). The function works as follows.
First from x, we compute Φ(x), the basis expansion of x, or a set of features of x. Then
some weight w is applied to it. For example, a linear discriminant function has the form
fw(x) = wTΦ(x). The perceptron algorithm is an example of linear discriminant functions.
The algorithm is described in details in slide 18. It can also be understood as a stochastic
gradient applied to a particular loss function (the perceptron loss, `(z) = max(0,−z)).
This interpretation is described in slide 18. The gain parameter γ is used to speed up
convergence.

7 Minimizing the empirical error rate

Next we discuss the optimization problem of choosing w so that the empirical error rate is
minimized.

min
w

1

n

n∑
i=1

I{yif(xi, w) ≤ 0}

The trouble with using the misclassification loss function is that it is noncontinuous, nondif-
ferentiable, and nonconvex, which makes optimization very hard. Thus, we try to approx-
imate this function with some nicer surrogate loss function `. For example, consider the
quadratic loss function `(z) = (z − 1)2. This function approximates well the loss function
around the threshold but it has a drawback that it also assigns big losses to large correct
assignments. Some other functions considered are exponential loss `(z) = exp(−z), log loss
`(z) = log(1+exp(−z)), perceptron loss `(z) = max(0,−z) and hinge `(z) = max(0, 1−z).
The exponential loss is mentioned mostly for historical reason since the log loss function
approximates the misclassification loss function better. Other loss functions people use in-
clude quadratic+sigmoid loss, and ramp loss. The choice of the surrogate loss function is
dependent on the constraints from the optimization algorithm. Slide 24 summarizes some
of the constraints. We also want loss function to work in the case of ambiguity i.e. the
minimum of the loss function should correspond to the class with higher probability. For
example, with hinge loss, the minimum always corresponds to the correct class. However,
with perceptron loss, whenever there is ambiguity, the minimum is always 0, which does
not give any information about which class a pattern belongs to.

8 Asymmetric cost

We continue the discussion on binary classification on two classes ±1, now with asymmetric
cost. For example. a heart patient does not want false negative in pacemaker, and is
willing to tolerate for false positive. However, the producer of the pacemaker would have a
different compromise between these two rates. Suppose that we have a threshold function
classifier. In this case, the approach is to look at the Receiver Operating Curve (ROC),
and choose the appropriate threshold. Again, we use decision theory to see what the
optimal decision rule looks like. Slide 27 gives a derivation of the optimal asymmetric
decision rule. The nice thing about the optimal decision rule, f(x), is that it is a threshold
function. Also notice that η(x) is the optimal ROC curve. In practice, we only observe
the empirical ROC curve, and we want to choose the weight so that it is as close to the
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optimal curve as possible. One possible way is to maximize area under curve (AUC). We
want min

∑
i∈P

∑
j∈N I{f(xi, w) ≤ f(xj , w)}, which is noncontinuous, nondifferentiable,

and nonconvex. Therefore, we use a surrogate loss function min
∑

i∈P
∑

j∈N `(f(xi, w) −
f(xj , w)). In practice, AUC might optimize the area in some direction we do not care about.
There are many other algorithms for addressing this problem.

9 Multiclass

When there are more than two classes, there are two common approaches: one versus
all, and one versus others. Slide 30 gives a summary of these two approaches. It is also
possible to perform classification into multiple classes directly instead of using many binary
classifiers. We can formulate the optimization problem with cost function similar to the
binary case. Slide 31 summarizes this approach. Similar to the binary case, if there are two
classes with the same score, the perceptron loss has the problem with 0 again. The fix is to
use hinge loss, or log loss. This approach is more expensive than one versus all but usually
not better than one versus all in practice.

10 Multilabel

We can also have classification problem where each pattern can be assigned multiple labels.
We can use one binary classifier for each label but this ignores the dependency between
labels. When we classify documents by topics, if a document belongs to a subtopic, it
must also belong to the topic containing that subtopic. However, when they are decided
by different classifiers, it is not always the case. A more complex way is as follows. Give a
score fk(x) to a document x and a topic k. Rw(y) measures the compatibility of the topic
set y. The set of topics assigned to x is argmaxy1...ykRw({y1 . . . yk}) +

∑
k fk(x). We can

again use the same loss functions as in the case of multiclass classification.
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