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The machine learning mix and match

Goals Classification, clustering, regression, other.

Representation

Parametric vs. kernels vs. nonparametric

Probabilistic vs. nonprobabilistic

Linear vs. nonlinear

Deep vs. shallow

Capacity Control

Explicit: architecture, feature selection

Explicit: regularization, priors

Implicit: approximate optimization

Implicit: bayesian averaging, ensembles

Operational

Considerations

Loss functions

Budget constraints

Online vs. offline

Computational

Considerations

Exact algorithms for small datasets.

Stochastic algorithms for big datasets.

Parallel algorithms.
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Topics for today’s lecture

Goals Classification, clustering, regression, other.

Representation

Parametric vs. kernels vs. nonparametric

Probabilistic vs. nonprobabilistic

Linear vs. nonlinear

Deep vs. shallow

Capacity Control

Explicit: architecture, feature selection

Explicit: regularization, priors

Implicit: approximate optimization

Implicit: bayesian averaging, ensembles

Operational

Considerations

Loss functions

Budget constraints

Online vs. offline

Computational

Considerations

Exact algorithms for small datasets.

Stochastic algorithms for big datasets.

Parallel algorithms.
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Summary

1. Bayesian decision theory

2. Nearest neigbours

3. Parametric classifiers

4. Surrogate loss functions

5. ROC curve.

6. Multiclass and multilabel problems
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Classification a.k.a. Pattern recognition

Association between patterns x ∈ X and classes y ∈ Y.

• The pattern space X is unspecified. For instance, X = Rd.

• The class space Y is an unordered finite set.

Examples:

• Binary classification (Y = {±1}).
Fraud detection, anomaly detection,. . .

•Multiclass classification: (Y = {C1, C2, . . . CM})
Object recognition, speaker identification, face recognition,. . .

•Multilabel classification: (Y is a power set).
Document topic recognition,. . .

• Sequence recognition: (Y contains sequences).
Speech recognition, signal identification, . . . .
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Probabilistic model

Patterns and classes are represented by random variables X and Y .
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P (X,Y ) = P (X)P (Y |X) = P (Y )P (X|Y )
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Bayes decision theory

Consider a classifier x ∈ X 7→ f (x) ∈ Y.

Maximixe the probability of correct answer:

P {f (X) = Y } =

∫
1I(f (x) = y) dP (x, y)

=

∫ ∑
y∈Y

1I(f (x) = y) P {Y = y|X = x} dP (x)

=

∫
P {Y = f (x)|X = x} dP (x)

Bayes optimal decision rule: f∗(x) = arg max
y∈Y

P {Y = y|X = x}

Bayes optimal error rate: B = 1−
∫

max
y∈Y

P {Y = y|X = x} dP (x).
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Bayes optimal decision rule

Comparing class densities py(x) scaled by the class priors Py = P {Y = y}:
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Hatched area represents the Bayes optimal error rate.
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How to build a classifier from data

Given a finite set of training examples {(x1, y1), . . . , (xn, ym)} ?

• Estimating probabilities:

– Find a plausible probability distribution (next lecture).

– Compute or approximate the optimal Bayes classifier.

•Minimize empirical error:

– Choose a parametrized family of classification functions a priori.

– Pick one that minimize the observed error rate.

• Nearest neighbours:

– Determine class of x on the basis of the closest example(s).
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Nearest neighbours

Let d(x, x′) be a distance on the patterns.

Nearest neighbour rule (1NN)

– Give x the class of the closest training example.

– fnn(x) = ynn(x) with nn(x) = arg mini d(x, xi).

K-Nearest neighbours rule (kNN)

– Give x the most frequent class among the K closest training examples.

K-Nearest neighbours variants

– Weighted votes (according the the distances)
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Voronoi tesselation

Euclian distance in the plane Cosine distance on the sphere

– 1NN: Piecewise constant classifier defined on the Voronoi cells.

– kNN: Same, but with smaller cells and additional constraints.
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1NN and Optimal Bayes Error

Theorem (Cover & Hart, 1967) :

Assume ηy(x) = P {Y = y|X = x} is continuous.

When n→∞, B ≤ P {fnn(X) 6= Y } ≤ 2B.

Easy proof when there are only two classes

Let η(x) = P {Y = +1|X = x}.
– B =

∫
min(η(x), 1− η(x)) dP (x)

– P {fnn(X) 6= Y }
=
∫
η(x)(1− η(x∗)) + (1− η(x))η(x∗) dP (x)

→
∫

2 η(x)(1− η(x)) dP (x)
� �����
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1NN versus kNN

Using more neighbours

– Is to Bayes rule in the limit.

– Needs more examples to approach the

condition η(xknn(x)) ≈ η(x)
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K is a capacity parameter

– to be determined using a validation set.
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Computation

Straightforward implementation
– Computing f (x) requires n distance computations.
– (−) Grows with the number of examples.
– (+) Embarrassingly parallelizable.

Data structures to speedup the search: K-D trees
– (+) Very effective in low dimension
– (−) Nearly useless in high dimension

Shortcutting the computation of distances
– Stop computing as soon as a distance gets non-competitive.

Use the triangular inequality d(x, xi) ≥ |d(x, x′)− d(xi, x
′)|

– Pick r well spread patterns x(1) . . . x(r).
– Precompute d(xi, x(j)) for i = 1 . . . n and j = 1 . . . r.
– Lower bound d(x, xi) ≥ maxj=1...r |d(x, x(j))− d(xi, x(j))|.
– Shortcut if lower bound is not competitive.
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Distances

Nearest Neighbour performance is sensitive to distance.

Euclidian distance: d(x, x′) = (x− x′)2

– do not take the square root!

Mahalanobis distance: d(x, x′) = (x− x′)>A (x− x′)
– Mahalanobis distance: A = Σ−1

– Safe variant: A = (Σ + εI)−1

Dimensionality reduction:

– Diagonalize Σ = Q>ΛQ.

– Drop the low eigenvalues and corresponding eigenvector.

– Define x̃ = Λ−1/2Qx. Precompute all the x̃i.

– Compute d(x, xi) = (x̃− x̃i)2.
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Discriminant function

Binary classification: y = ±1

Discriminant function: fw(x)

– Assigns class sign(fw(x)) to pattern x.

– Symbol x represents parameters to be learnt.

Example: Linear discriminant function

– fw(x) = w>Φ(x).
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Example: The Perceptron

The perceptron is a linear discriminant function

Retina
Associative area

x

w’ x

(w’ x)sign

Treshold element
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The Perceptron Algorithm

– Initialize w ← 0.

– Loop

– Pick example xi, yi
– If yiw

>Φ(xi) ≤ 0 then w ← w + yiΦ(xi)

– Until all examples are correctly classified

Perceptron theorem

Guaranteed to stop if the training data is linearly separable

Perceptron via Stochastic Gradient Descent

SGD for minimizing C(w) =
∑
imax(0,−yiw>Φ(xi)) gives:

– If yiw
>Φ(xi) ≤ 0 then w ← w + γ yiΦ(xi)
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The Perceptron Mark 1 (1957)

The Perceptron is not an algorithm.

The Perceptron is a machine!
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Minimize the empirical error rate

Empirical error rate

min
w

1

n

n∑
i=1

1I{yi f(xi, w) ≤ 0}

Misclassification loss function

– Noncontinuous

– Nondifferentiable

– Nonconvex y y(x)^
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Surrogate loss function

Minimize instead

min
w

1

n

n∑
i=1

`(yi f(xi, w))

Quadratic surrogate loss

Quadratic:

`(z) = (z − 1)2

y y(x)^
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Surrogate loss functions

Exp loss and Log loss

Exp loss:

`(z) = exp(−z)

Log loss:

`(z) = log(1 + exp(−z)) y y(x)^

Hinges

Perceptron loss:

`(z) = max(0,−z)

Hinge loss:

`(z) = max(0, 1− z) y y(x)^
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Surrogate loss function

Quadratic+Sigmoid

Let σ(z) = tanh(z).

`(z) = (σ(3
2z)− 1)2

y y(x)^

Ramp

Ramp loss:

`(z) = [1− z]+ − [s− z]+
y y(x)^
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Choice of a surrogate loss function

Constraints from the optimization algorithm

– A convex loss with a convex fw(x) ensures the unicity of the minimum.

– Optimization by gradient descent suggests differentiable losses.

– Dual optimizatoin methods work well with hinges.

Class calibrated loss

– In the limit min
∫ [
η(x)`(fw(x)) + (1− η(x))`(−fw(x))

]
dP (x).

– Define L(η, z) = η`(z) + (1− η)`(−z).
– If we had an infinite training set and a fully flexible fw(x),

we would have: f (x) = arg min
z

L(P {Y = +1|X = x} , z).
– Examples.
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Asymmetric cost problem

Binary classification.

– Positive class y = +1, negative class y = −1.

Examples of positive classes.

– fraudulent credit card transaction

– relevant document for a given query

– heart failure detection

Different kinds of errors have different costs.

– False positive, false detection, false alarm.

– False negative, non detection.

Costs are difficult to assess.
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Receiver Operating Curve (ROC)

Changing the threshold

– Assigned class is sign(f (x)− b).
– True positives: F+(b) = P {f (x)− b > 0|Y = +1}
– False positives: F−(b) = P {f (x)− b > 0|Y = −1}
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Optimal decision rule with asymmetric costs

Optimal asymmetric decision rule

– Let Cy be the cost of erroneously assigning class y to an example.

– We want to minimize

∫ ∑
y=±1

Cy 1I(f (x) = y) P {Y 6= y|X = x} dP (x).

– f (x) = arg min
y=±1

Cy P {Y 6= y|X = x} = sign

(
η(x)− C+

C+ + C−

)

Optimal ROC curve

– The optimal decision rules have the form sign(f (x)− b)
– Therefore f (x) = η(x) = P {Y = +1|X} gives the optimal ROC curve.

– Same for monotone transformations of f (x).
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Empirical ROC
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Ranking

Find a function fw(x) with ROC close to the optimal ROC.

Maximize Area Under Curve (AUC)

– We would like min
∑
i∈P

∑
j∈N

1I{f (xi, w) ≤ f (xj, w)}

– With a surrogate min
∑
i∈P

∑
j∈N

`(f (xi, w)− f (xj, w))

Ranking the best instances

– AUC often optimizes useless parts of the ROC curve.

– Various algorithms have been proposed to do better. . . .
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What to do with more than two classes ?

Turning the problem into multiple binary classification problems.

•One versus all (M classifiers).

– Classifier fk(x) detects class k.

– Recognized class is arg maxk fx(x).

– Each classifier is trained on the full dataset.

– Dubious principle. Works well in practice.

•One versus others (M(M − 1)/2 classifiers)

– Classifier fk,k′ separates class k from class k′.
– Recognized class if arg maxk

∑
k′ fk,k′(x).

– Classifier fk,k′ is trained on examples from classes k and k′.
– Dubious principle. Often faster but sligtly worse.
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What to do with more than two classes ?

Doing it right!
– Learn a function Sw(x, y) that measures how well y goes with x.
– Recognized class arg maxy Sw(x, y)

Cost functions

Perceptron-like: min
w

1

n

n∑
i=1

− Sw(xi, yi) + max
y
Sw(xi, y)

Hinge-like: min
w

1

n

n∑
i=1

max
[
1− Sw(xi, yi) + max

y 6=yi
Sw(xi, y)

]
+

Logloss-like: min
w

1

n

n∑
i=1

− Sw(xi, yi) + log
(∑

y

eSw(xi,y)
)

Comments
– More costly than OVA.
– Not better than OVA in practice.

Léon Bottou 31/32 COS 424 – 2/23/2010



Multilabel Problems

Documents can treat multiple topics.

Therefore y is a subset of the set of topics.

Simple approach

– One binary classification for each topic.

– But labels are not independent: taxonomies, related topics.

Complex scoring functions

– fk(x) gives a score for document x and topic k.

– Rw(y) measures the compatibility the topic set y.

– Recognized topics: arg max
y1...yk

Rw({y1 . . . yk}) +
∑
k

fk(x).

– Same loss functions as the multiclass problem.
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