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T he machine learning mix and match

Goals

Classification, clustering, regression, other.

Representation

Parametric vs. kernels vs. nonparametric
Probabilistic vs. nonprobabilistic

l_inear vs. nonlinear

Deep vs. shallow

Capacity Control

Explicit: architecture, feature selection
Explicit: regularization, priors

Implicit: approximate optimization
Implicit: bayesian averaging, ensembles

Operational
Considerations

LLoss functions
Budget constraints
Online vs. offline

Computational
Considerations

Exact algorithms for small datasets.
Stochastic algorithms for big datasets.
Parallel algorithms.
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Topics for today’s lecture

Goals

Classification, clustering, regression, other.

Representation

Parametric vs. kernels vs. nonparametric
Probabilistic vs. nonprobabilistic

Linear vs. nonlinear

Deep vs. shallow

Capacity Control

Explicit: architecture, feature selection
Explicit: regularization, priors

Implicit: approximate optimization
Implicit: bayesian averaging, ensembles

Operational
Considerations

Loss functions
Budget constraints
Online vs. offline

Computational
Considerations

Exact algorithms for small datasets.
Stochastic algorithms for big datasets.
Parallel algorithms.
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Summary

1. Bayesian decision theory
2. Nearest neigbours

3. Parametric classifiers

4. Surrogate loss functions
5. ROC curve.

6. Multiclass and multilabel problems
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Classification a.k.a. Pattern recognition

Association between patterns x € A and classes y € ).

e The pattern space X is unspecified. For instance, X = RY,

e T he class space ) is an unordered finite set.
Examples:

e Binary classification (Y = {£1}).
Fraud detection, anomaly detection,. ..

e Multiclass classification: (Y ={C1,Co,...Cy})
Object recognition, speaker identification, face recognition,. ..

e Multilabel classification: () is a power set).
Document topic recognition,. ..

e Sequence recognition: () contains sequences).
Speech recognition, signal identification, .. ..
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Probabilistic model

Patterns and classes are represented by random variables X and Y.

Pattern Class
Generator > X Generator > Y
L > ‘ X
Class Class 1
Labeler Y Pattern Generator ||

P(X,Y) = P(X)P(Y|X) = P(Y)P(X|Y)
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Bayes decision theory

Consider a classifier x € X — f(x) € V.

Maximixe the probability of correct answer:
PUX) =Y} = [1f) = y)aPla.y
/ZI[ y)P{Y =y|X =z} dP(x)

yey

_ /p{y — f(@)|X = 2} dP(z)

Bayes optimal decision rule: f*(z) = argmaxP{Y = y|X = =}
yey

Bayes optimal error rate: B=1 — /maa);(IP’{Y =y|X =z} dP(x).
yc
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Bayes optimal decision rule

Comparing class densities p,(x) scaled by the class priors P, =P{Y = y}:

Pc-pc(X)

Pa-pa(X)
Pg-pg(X)

Hatched area represents the Bayes optimal error rate.
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How to build a classifier from data

Given a finite set of training examples {(x1,Y1)s--- (Tn,ym)} ?

e Estimating probabilities:
— Find a plausible probability distribution (next lecture).
— Compute or approximate the optimal Bayes classifier.

e Minimize empirical error:
— Choose a parametrized family of classification functions a priori.
— Pick one that minimize the observed error rate.

e Nearest neighbours:
— Determine class of = on the basis of the closest example(s).
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Nearest neighbours

Let d(x,z’) be a distance on the patterns.

Nearest neighbour rule (1NN)
— Give x the class of the closest training example.

— Jan(®) = Ynn(y) With nn(x) = arg min; d(z, x;).

K-Nearest neighbours rule (kNN)
— Give x the most frequent class among the K closest training examples.

K-Nearest neighbours variants
— Weighted votes (according the the distances)
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Voronol tesselation

Euclian distance in the plane Cosine distance on the sphere

— 1NN: Piecewise constant classifier defined on the VVoronoi cells.
— KNN: Same, but with smaller cells and additional constraints.
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1NN and Optimal Bayes Error

Theorem (Cover & Hart, 1967) :

Assume ny(x) = P{Y = y|X = x} is continuous.

Easy proof when there are only two classes

Let n(z) =P{Y =+1|X = z}.

- B = [min(n(z),1 —n(z))dP(v)

_ IP){fnn()Q 7& Y}
= [n(x)(1 = n(z*) + (1 = n(x))n(z*) dP(x)
— [2n(z)(1 —n(z))dP(x) nx) o 1
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1NN versus KNN

Using more neighbours

— Is to Bayes rule in the limit.
— Needs more examples to approach the
condition n(zgnn(z)) = n(x)

K is a capacity parameter

— to be determined using a validation set.
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Computation

Straightforward implementation

— Computing f(x) requires n distance computations.
— (—) Grows with the number of examples.

— (+) Embarrassingly parallelizable.

Data structures to speedup the search: K-D trees
— (+) Very effective in low dimension
— (=) Nearly useless in high dimension

Shortcutting the computation of distances
— Stop computing as soon as a distance gets non-competitive.

Use the triangular inequality d(x,x;) > |d(x,x") — d(x;, z’)]
— Pick r well spread patterns x(y...z.

— Precompute d(z;, ;) fori=1...nand j=1...r.

— Lower bound d(z, ;) > max;—1_, |d(:1:,x<]-)) — d(azi,x(j)ﬂ.

— Shortcut if lower bound is not competitive.
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Distances

Nearest Neighbour performance is sensitive to distance.

Euclidian distance: d(z,z’) = (z — :I:’)2

— do not take the square root!

Mahalanobis distance: d(z,z’) = (z — z’) " A (z — 2/)
— Mahalanobis distance: A = X1
— Safe variant: A = (X 4 eI)~!

Dimensionality reduction:

— Diagonalize ¥ = Q" AQ.

— Drop the low eigenvalues and corresponding eigenvector.
— Define # = A~1/2Q z. Precompute all the ;.

— Compute d(z, z;) = (& — &;)2.
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Discriminant function

Binary classification: y = +1

Discriminant function: f,(x)

— Assigns class sign(fw(x)) to pattern .
— Symbol x represents parameters to be learnt.

Example: Linear discriminant function
— fw(x) = wTCIJ(a:).
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Example: The Perceptron

The perceptron is a linear discriminant function

Retina o
Associative area

Treshold element

sign(w’ x)

.
/>

X
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T he Perceptron Algorithm

— Initialize w «— 0.
— Loop

— Pick example x;, y;

— If y; ’wT(I)(CIJi) < 0 then w «— w + y; ®(x;)
— Until all examples are correctly classified

Perceptron theorem
Guaranteed to stop if the training data is linearly separable

Perceptron via Stochastic Gradient Descent
SGD for minimizing C(w) = Y, max (0, —y; w ' ®(x;)) gives:
—If y,w! ®(x;) < 0 then w — w + v y; ®(x;)
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The Perceptron Mark 1 (1957)

The Perceptron is not an algorithm.
The Perceptron is a machine!
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Minimize the empirical error rate

Empirical error rate

n

1
min — 3" Wy; £ (@i, w) < 0}

1=1

Misclassification loss function

— Noncontinuous
— Nondifferentiable
— Nonconvex y y(X)
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Surrogate loss function

Minimize instead

1 n
min — § L(y; f(x;, w))
von3

Quadratic surrogate loss

Quadratic: \T
£(z) = (= — 1)? I\
Y y(x)
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Surrogate loss functions

Exp loss and Log loss

Exp loss:
£(z) = exp(—=z)

LLog loss:
£(z) = log(1 + exp(—=z))

N y Y(X)
AN

Hinges

Perceptron |oss:
£(z) = max(0, —=)

Hinge loss:
¢(z) = max(0,1 — 2z)
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Surrogate loss function

Quadratic+Sigmoid

Let o(z) = tanh(z).
£(2) = (o(32) — 1)?

Ramp

Ramp loss:
l(z) =[1—z]4 —[s — 2]+
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Choice of a surrogate loss function

Constraints from the optimization algorithm

— A convex loss with a convex f,,(x) ensures the unicity of the minimum.
— Optimization by gradient descent suggests differentiable losses.

— Dual optimizatoin methods work well with hinges.

Class calibrated loss

~ In the limit min [ [n(@)¢( fu(x)) + (1 = n(@))(— ful)] dP(x).

— Define L(n,z) =nl(z) + (1 — n)l(—=z).

— If we had an infinite training set and a fully flexible f,,(z),
we would have: f(z)=argmin L(P{Y = +1|X =z}, 2).

— Examples.
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Asymmetric cost problem

Binary classification.
— Positive class y = +1, negative class y = —1.

Examples of positive classes.

— fraudulent credit card transaction

— relevant document for a given query
— heart failure detection

Different kinds of errors have different costs.

— False positive, false detection, false alarm.
— False negative, non detection.

Costs are difficult to assess.

Léon Bottou 25/32

COS 424 — 2/23/2010



Receiver Operating Curve (ROCQC)

Changing the threshold

— Assigned class is sign(f(x) — b).

— True positives: F(b) =P{f(x)—b>0Y =+1}
— False positives: F_(b) =P{f(x) —b>0)Y = -1}

F+

0 1 F-
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Optimal decision rule with asymmetric costs

Optimal asymmetric decision rule
— Let () be the cost of erroneously assigning class y to an example.

— We want to minimize / Z Cyl(f(z) =y)P{Y #y|X =z} dP(x).
—+1
- — inCy, P{Y yX— — i C
fla) = arg in Cy Y #ylX =2} = sign <n<w>—c++c_>

Optimal ROC curve

— The optimal decision rules have the form sign(f(z) — b)

— Therefore f(z) =n(x) =P{Y = +1|X} gives the optimal ROC curve.
— Same for monotone transformations of f(x).
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Empirical ROC

Positive examples, decreasing f(x)

Misclassified
pairs

Correctly

classified pairs

Negative examples, decreasing f(x)
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Ranking

Find a function f,(x) with ROC close to the optimal ROC.

Maximize Area Under Curve (AUQC)

— We would like min » > " I{f(z;,w) < f(zj,w)}
i€P jeN

— With a surrogate minz Z ((f(zs,w) — flxj,w))

ieP jeN

Ranking the best instances

— AUC often optimizes useless parts of the ROC curve.
— Various algorithms have been proposed to do better. . ..
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What to do with more than two classes 7?7

Turning the problem into multiple binary classification problems.

e One versus all (M classifiers).
— Classifier fi.(x) detects class k.
— Recognized class is arg max;. fr(x).
— Each classifier is trained on the full dataset.
— Dubious principle. Works well in practice.

e One versus others (M (M — 1)/2 classifiers)
— Classifier f. ;s separates class k£ from class K.
— Recognized class if argmaxy > s f1. 1/(@).
— Classifier f; ;s is trained on examples from classes k£ and K.
— Dubious principle. Often faster but sligtly worse.
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What to do with more than two classes 7?7

Doing it right!
— Learn a function Sy (z,y) that measures how well y goes with .

— Recognized class argmax;, Sw(T,y)

Cost functions ,
1
Perceptron-like: min — E — Swlz;, y;) + max Sy (x;, y)
Yy

won
1=1
n
Hinge-like: minl max [1 — Sw(x;, yi) + max Sw(z;, y)LL
won Y7 Vi

1=1
n

. 1 Suw(;
Logloss-like: mzénﬁzl — SwlT;, yi) +10g<ze w(%y))
1= y

Comments

— More costly than OVA.

— Not better than OVA in practice.
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Multilabel Problems

Documents can treat multiple topics.
Therefore y is a subset of the set of topics.

Simple approach
— One binary classification for each topic.
— But labels are not independent: taxonomies, related topics.

Complex scoring functions
— fi.(z) gives a score for document x and topic k.

— Ry (y) measures the compatibility the topic set y.

— Recognized topics: argmax Ry,({y1...yp}) +ka(x).
Y1---Yk i

— Same loss functions as the multiclass problem.
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