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1 Probability

1.1 Covariance

V ar(X) = E[(X − E(X))2]
Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]

= E[XY ]− E[X]E[Y ]

If X and Y are uncorrelated (Cov(X,Y ) = 0), they are not necessarily
independent.

1.2 Markov Inequality

Consider a nonnegative random variable X,

P(X > a) ≤ E(X)
a

.

The proof follows from observing 1(X > a) ≤ X
a , and taking expectations

on each side.

1.3 Chebyshev Inequality

P(|X − E(X)| > a) ≤ V ar(X)
a2

This is proved by using Markov’s Inequality with the nonnegative random
variable (X − E(X))2.

Equivalently, replacing a with α sdev(X) we can write,

P(|X − E(X)| > α sdev(X)) ≤ 1
α2
.

1.4 Chernoff Bounding

Apply Markov property to et[X−E(X)].
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1.5 Variance and Covariance

Let X ∈ Rd, define the covariance matrix,

Σ = E([X − E(X)][X − E(X)]T ). (1)

Next apply the Markov Inequality to Z = [X − E(X)]TΣ−1[X − E(X)],

P(Z > a) ≤ E(Z)
a

=
E([X − E(X)]TΣ−1[X − E(X)])

a

=
E(trace([X − E(X)]TΣ−1[X − E(X)]))

a

=
E(trace([X − E(X)][X − E(X)]TΣ−1))

a

=
trace(ΣΣ−1)

a

=
trace(Id)

a

=
d

a

Variance and Covariance are indicators of linear dependence.

1.6 Law of Large Numbers

Let X1, ..., Xn be independent and E(Xi) = µ and V ar(Xi) = σ2. Define
X̄ = 1

n

∑n
i=1(Xi). Then E(X̄) = µ and

V ar(X̄) =
1
n2

n∑
i=1

V ar(Xi)

=
1
n2

n∑
i=1

σ2

=
σ2

n

Now applying the Chebyshev Inequality,

P(|X̄ − µ| > a) ≤ σ2

na
.
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1.7 Probability Definitions

1.7.1 Probability Measures

The paradox of the great circle motivates careful definitions of probabilities.
Ω is the set of outcomes, and P(Ω) = 1. If A∩B = ∅, then P(A∪B) = P(A)+
P(B). Another property of a probability measure is countable additivity:
if A1, A2, ... are disjointed, P(∪∞i=1Ai) =

∑∞
i=1 P(Ai). Futhermore, we only

take probabilities of events that are Borel Sets.

1.7.2 Cumulative Distribution Function (CDF)

The cdf is defined, F (x) = P(X ≤ x). Note P(X ∈ (a, b]) = F (b)− F (a). If
X ∈ Rd, F (x) = P(X1 ≤ x1, ..., Xd ≤ xd).

1.7.3 Density Function (PDF)

If F is differentiable, the density is defined, p(x) = F ′(x). We can write
P(X ∈ (a, b]) =

∫
x∈(a,b] p(x)dx. The expected value of X can be calculated

with E(X) =
∫∞
−∞ xp(x)dx. The total area under the density function is 1,∫∞

−∞ p(x)dx = 1. Note that it is usually much harder to estimate the density
function than the cumulative distribution function.

1.7.4 The Normal Distribution

Let Z be normally distributed with mean 0 and variance 1, Z ∼ N (0, 1).
The pdf can be written,

p(z) = φ(z) =
1√
2π
e−

z2

2 .

The cdf can be written,

F (z) = Φ(z) =
1
2

[1 + erf(
z√
2

)]. (2)

Now let X be normally distributed with mean µ and variance σ2, X ∼
N (µ, σ2). The pdf can be written,

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

The cdf can be written,

F (x) = Φ(
x− µ
σ

).
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1.8 Central Limit Theorem

Let X1, ..., Xn be independent with mean µ and variance σ2. Then approx-
imately

1√
n

n∑
i=1

Xi − µ
σ

∼ N (0, 1).

The central limit theorem states as n goes to ∞,

P

(
1√
n

n∑
i=1

Xi − µ
σ

> a

)
→ 1− Φ(a). (3)

1.9 Law of Large Numbers

P(|X̄ − µ| > a) ≤ 1
na2
→ 0,

as n goes to ∞.

2 Comparing Classifiers

The goal is to statistically compare the performance of classifiers C1 and C2.
Define

Ri =


+1 if C2 correct and C1 incorrect,
0 if they agree,
−1 If C1 correct and C2 incorrect.

Assume the Ri’s are independent and E(Ri) = µ and V ar(Ri) = σ2.
Also define µ̂ = 1

n

∑n
i=1 ri and R̄n = 1

n

∑n
i=1Ri. If Ri is significantly greater

than 0, C2 is better. If Ri is significantly smaller than 0, C1 is better.

2.1 Central Limit Theorem

We see E(R̄n) = µ and Std(R̄n) = σ√
n

. By the CLT,

R̄n − µ
σ/
√
n
∼ N (0, 1).

If C2 is worse than C1, P(R̄n > µ̂) ≈ 1 − Φ( µ̂−µσ
√
n) ≤ 1 − Φ

(
µ̂
σ

√
n
)

=

Φ
(
− µ̂
σ

√
n
)
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2.2 Student’s t-distribution

Define σ̂ = 1
n−1

∑n
i=1(ri − µ̂)2 and S̄2

n = 1
n−1

∑n
i=1(Ri − R̄)2. Then

R̄n − ν
Sn/
√
n
∼ student’s t-distribution with n-1 degrees of freedom

2.3 Chernoff Bounding

P(R̄n > µ̂) ≤ e−
n2µ̂2

r
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