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1 Probability

1.1 Covariance

Var(X)
Cov(X,Y)

[(X —E(X))?]
[(X —EX))(Y —E(Y))]
= E[XY]- E[X]E[Y]

E
E

If X and Y are uncorrelated (Cov(X,Y) = 0), they are not necessarily
independent.

1.2 Markov Inequality

Consider a nonnegative random variable X,

E(X)

P(X <
(X >a)< =2

The proof follows from observing 1(X > a) < %

on each side.

, and taking expectations

1.3 Chebyshev Inequality

Var(X)

P(X —B(X)| > a) <~

This is proved by using Markov’s Inequality with the nonnegative random
variable (X — E(X))2.
Equivalently, replacing a with asdev(X) we can write,
1
P(|X —E(X)| > asdev(X)) < —.
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1.4 Chernoff Bounding

Apply Markov property to !X —E®)],



1.5 Variance and Covariance

Let X € RY, define the covariance matrix,
2 = E([X - E(X)][X - E(X)]"). (1)

Next apply the Markov Inequality to Z = [X — E(X)]TS71[X — E(X)],

P(Z >a) < E(aZ)
_ E(X -EX)"SX - E(X)))
E(trace(] (X))"E X - E(X)]))

X—-FE
E(trace([X — E(X)][X — E(X)]Tx~1)

trace(XX 1)
a
trace(ly)
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Variance and Covariance are indicators of linear dependence.

1.6 Law of Large Numbers

Let X1, ..., X,, be independent and E(X;) = p and Var(X;) = o2. Define
X =21%" (X;). Then E(X) = p and
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Var(X) = 3 Z Var(X;)
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Now applying the Chebyshev Inequality,
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B(X — | > a) < .
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1.7 Probability Definitions
1.7.1 Probability Measures

The paradox of the great circle motivates careful definitions of probabilities.
Q is the set of outcomes, and P(2) = 1. If ANB = (), then P(AUB) = P(A)+
P(B). Another property of a probability measure is countable additivity:
if Ay, Ag, ... are disjointed, P(U2;4;) = > .2, P(A;). Futhermore, we only
take probabilities of events that are Borel Sets.

1.7.2 Cumulative Distribution Function (CDF)

The cdf is defined, F(z) = P(X < x). Note P(X € (a,b]) = F(b) — F(a). If
X cRY, Fz) =P(X; <21, ..., X4 < 9).

1.7.3 Density Function (PDF)

If F is differentiable, the density is defined, p(z) = F'(x). We can write
P(X € (a,b]) = [ e(ab) p(z)dz. The expected value of X can be calculated

xT
with E(X) = [%_ap(x)dz. The total area under the density function is 1,
| fooo p(z)dz = 1. Note that it is usually much harder to estimate the density

function than the cumulative distribution function.

1.7.4 The Normal Distribution

Let Z be normally distributed with mean 0 and variance 1, Z ~ N(0,1).
The pdf can be written,
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p(z) = 6(=) = —m=e 7.
The cdf can be written,
Z
V2

Now let X be normally distributed with mean ; and variance o2, X ~
N(u,0?). The pdf can be written,

F2) = B(2) = ~[1+ erf(
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p(x) = 5o

The cdf can be written,

Fz) = o(Z—1).
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1.8 Central Limit Theorem

Let X1, ..., X,, be independent with mean y and variance o?. Then approx-
imately

=y

The central limit theorem states as n goes to oo,

P<1

1.9 Law of Large Numbers

B N(O,1).

a) —1—®(a). (3)

. 1
P(’X—M\>a)§@—>0a

as n goes to oo.

2 Comparing Classifiers

The goal is to statistically compare the performance of classifiers C; and Cs.
Define

+1 if Cy correct and C; incorrect,
R; =<0 if they agree,
—1 If Cy correct and C5 incorrect.
Assume the R;’s are independent and E(R;) = p and Var(R;) = o2

Also define i = 1 3% |y and R, = 1 3°7 | R;. If R; is significantly greater
than 0, Cs is better. If R; is significantly smaller than 0, C is better.

2.1 Central Limit Theorem

We see E(R,,) = p and Std(R,) = ﬁ By the CLT,
R, —
N 0,1).
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If Cy is worse than Cy, P(R, > i) ~ 1 — @(%\/ﬁ) <1-9o <“\/ﬁ) =

o (_g n)



2.2 Student’s t-distribution
Define 6 = 255" | (r; — 1)? and S2 = -1 3" | (R; — R)*. Then

R, —v
Sn/Vn

2.3 Chernoff Bounding

~ student’s t-distribution with n-1 degrees of freedom

n2p2

P(R,>p)<e +



