Connecting the dots with common sense and linear models

Léon Bottou

NEC Labs America

COS 424 - 2/4/2010

Useful things:

- understanding probabilities,
- understanding statistical learning theory,
- knowing countless statistical procedures,
- knowing countless machine learning algorithms.

Essential things:

- applying common sense,
- paying attention to details,
- being able to setup experiments,
- and to measure the outcome of experiments,
- and to measure plenty of other things,

Question:

Find *y* given *x*.

У
1.87
1.84
2.23
3.04
2.68
0.01
0.37
0.37
2.05
0.96

• • •

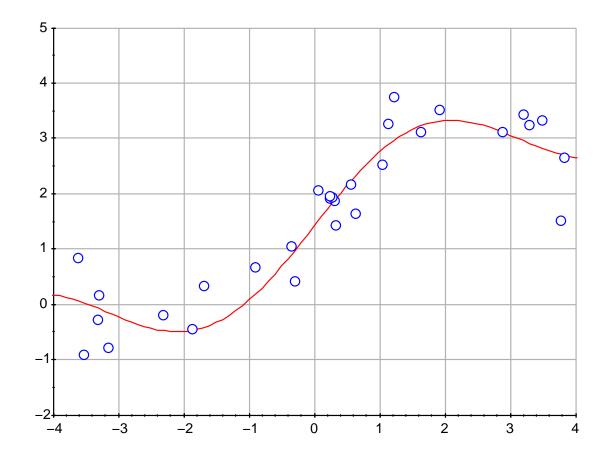
Question:

Find *y* given *x*.

У
1.87
1.84
2.23
3.04
2.68
0.01
0.37
0.37
2.05
0.96
-0.35
3.18

Answer:

Connect the dots. Read the curve.



Question: Find y given x.

$[\mathbf{x}]_1$	$[\mathbf{x}]_2$	$[\mathbf{x}]_3$	$[\mathbf{x}]_4$	$[\mathbf{x}]_5$	$[\mathbf{x}]_6$	$[\mathbf{x}]_7$	$[\mathbf{x}]_8$	 $[\mathbf{x}]_{13,123}$	$[\mathbf{x}]_{13,124}$	$[\mathbf{x}]_{13,125}$	У
0.39	0.50	5.84	-4.36	-0.01	7.20	-7.40	-7.16	 -5.48	0.77	5.03	5.46
7.34	1.92	-5.66	-5.33	-6.15	-3.14	4.53	6.37	 -2.30	6.45	5.10	5.18
2.27	4.57	4.18	-6.07	-5.47	-6.97	2.67	-3.93	 2.77	7.46	4.84	6.97
1.09	-2.17	-6.38	5.66	-2.65	-2.81	-0.69	2.76	 0.42	5.88	0.29	-7.13
2.85	1.79	6.22	1.34	-1.83	3.01	3.99	-1.75	 0.03	1.55	-3.32	-5.42
-5.67	2.53	-3.47	-0.46	3.21	-2.73	6.65	-0.77	 -1.41	-3.93	3.14	5.37
3.80	-0.00	1.89	3.24	2.30	-1.45	7.63	-2.12	 6.47	2.04	3.58	-4.96
7.54	2.47	6.39	4.95	-2.51	-6.46	0.49	-0.61	 5.10	1.90	1.79	3.20
-7.99	4.93	-2.13	-7.11	-5.10	2.13	6.31	7.00	 1.71	-2.35	-7.87	-4.70
-6.80	7.33	-0.99	4.17	-7.81	-7.64	4.01	-3.37	 7.29	-2.41	7.66	-6.70
-0.78	5.34	-5.94	-1.76	3.79	2.92	0.75	7.04	 -3.87	-1.46	-3.37	-3.66
7.54	2.47	6.39	4.95	-2.51	-6.46	0.49	-0.61	 5.10	1.90	1.79	3.20
-7.99	4.93	-2.13	-7.11	-5.10	2.13	6.31	7.00	 1.71	-2.35	-7.87	-4.70
-6.80	7.33	-0.99	4.17	-7.81	-7.64	4.01	-3.37	 7.29	-2.41	7.66	-6.70
										I	

Idea: (1) understand how we do the 2D case. (2) generalize!

Polynomial: $f(x) = w_0 + w_1 x + w_2 x^2 + \cdots + w_n x^n$

Slight generalization:

$$egin{array}{rcl} x & \longrightarrow & \Phi(x) = egin{bmatrix} \phi_0(x) \ \phi_1(x) \ \cdots \ \phi_n(x) \end{bmatrix} & \longrightarrow & f(x) = [w_0, w_1, \dots, w_n] imes egin{bmatrix} \phi_0(x) \ \phi_1(x) \ \cdots \ \phi_n(x) \end{bmatrix}$$

Equivalently: $f(x) = w^{ op} \Phi(x)$

Lets choose a basis Φ and use the data to determine w.

Input : x_i Output : $w^{\top} \Phi(x_i)$ Desired Output : y_i

Difference : $y_i - w^{\top} \Phi(x_i)$

Minimize:
$$C(w) = \sum_{i=1}^{n} (y_i - w^{\top} \Phi(x_i))^2$$

Quadratic convex function in w.

The minimum exists and is unique.

But it could be reached for multiple values of w.

At the optimum,
$$\frac{dC}{dw} = \sum_{i=1}^n 2\left(y_i - w^{ op} \Phi(x_i)\right) \Phi(x_i)^{ op} = 0$$

Therefore we must solve the system of equations :

$$\left[\sum_{i=1}^n \Phi(x_i) \Phi(x_i)^{ op}
ight] imes w \; = \; \left[\sum_{i=1}^n y_i \Phi(x_i)
ight]$$

Shorthand form :

$$(\ X^ op X\)\ w = (\ X^ op Y\)$$

Almost the same as $w = (X^{\top}X)^{-1} (X^{\top}Y)$.

You should never solve a system by inverting a matrix.

Who said $X^{\top}X$ is invertible?

Consider the case where $\phi_1(x) = \phi_8(x)$

- the matrix $X^{\top}X$ is singular.
- but the minimum is unchanged.
- the minimum is reached by many w, as long as $w_1 + w_8$ remains constant.

Among the w that minimize C(w), compute the one with the smallest norm.

Diagonalization of $X^{\top}X$

$$Q^ op D \ Q \ w = X^ op Y \quad \Leftarrow \quad w = Q^ op D^+ \ Q \ X^ op Y$$

Traditional methods: SVD or QR decomposition of \boldsymbol{X}

$$egin{aligned} V \ D \ U^{ op} \ U \ D \ V^{ op} \ w = V \ D \ U^{ op} \ Y & \Leftarrow & w = V \ D^+ \ U^{ op} Y \ R^{ op} Q^{ op} Q \ R \ w = R^{ op} Q^{ op} Y & \Leftarrow & R \ w = Q^{ op} Y \end{aligned}$$

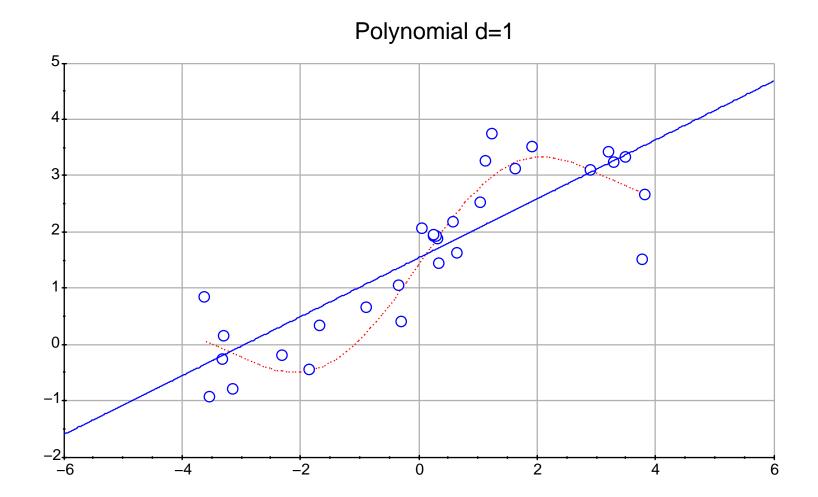
and solve using back-substitution.

Simple and Fast: Regularization + Cholevsky

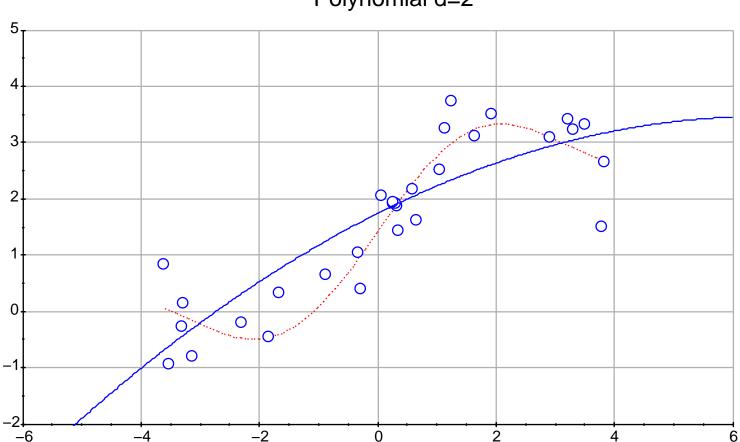
$$egin{array}{lll} \min \ C(w)+arepsilon w^2 & \Longleftrightarrow \ & (X^ op X+arepsilon I) \ & w=(X^ op Y) \ & \Leftrightarrow \ & U \ U^ op w=(X^ op Y) \end{array}$$

and solve using two rounds of back-substitution.

 $\Phi(x) = 1, x$

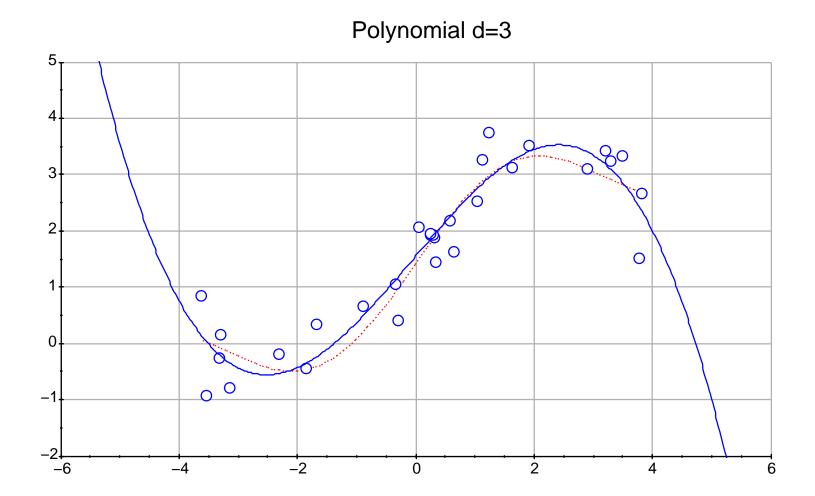


 $\Phi(x) = 1, x, x^2$

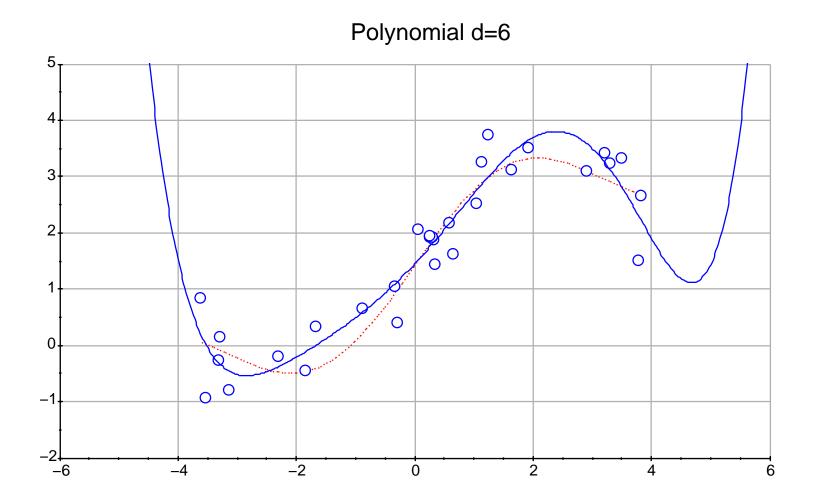


Polynomial d=2

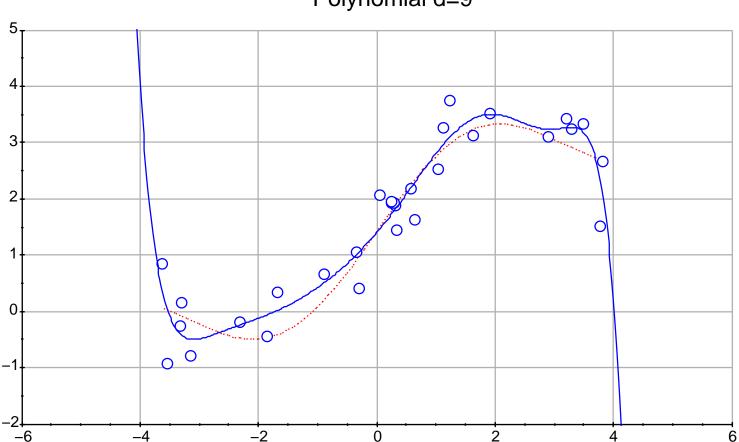
 $\Phi(x) = 1, x, x^2, x^3$



 $\Phi(x) ~=~ 1,~ x,~ x^2,~ x^3,~ x^4,~ x^5,~ x^6$

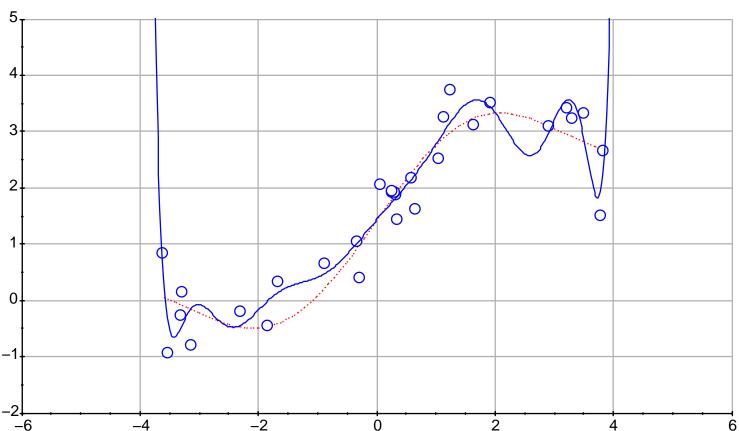


 $\Phi(x) = 1, x, x^2, \dots, x^9$



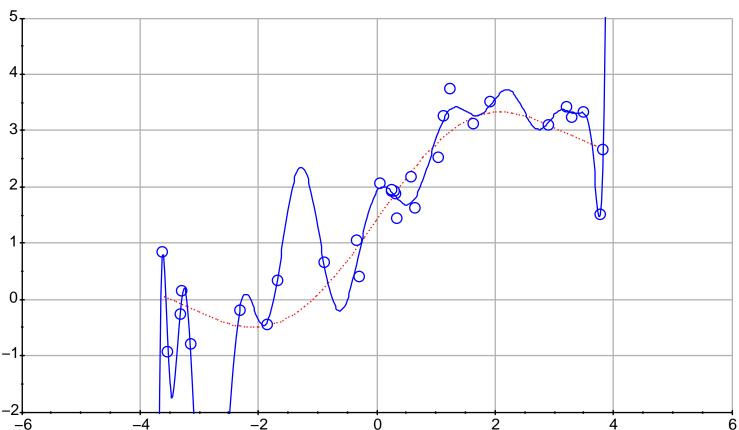
Polynomial d=9

 $\Phi(x) ~=~ 1,~ x,~ x^2, \ldots,~ x^{12}$



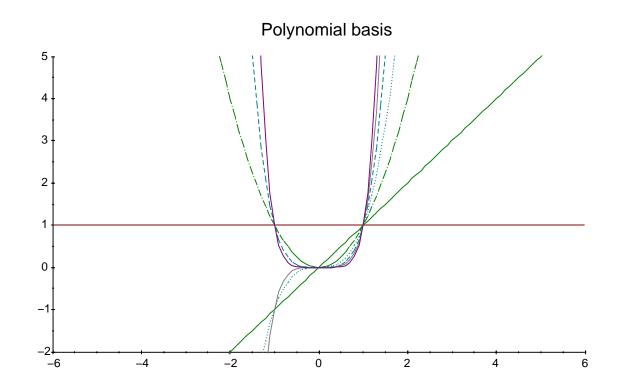
Polynomial d=12

 $\Phi(x) = 1, x, x^2, \dots, x^{20}$



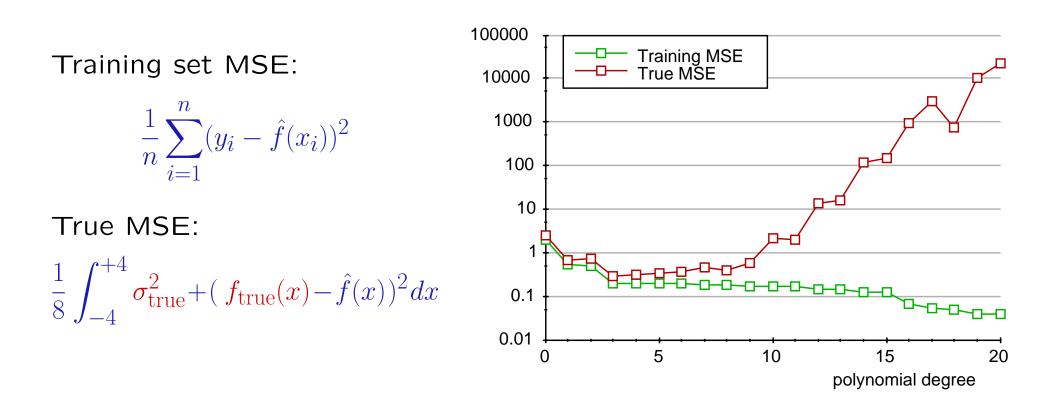
Polynomial d=20

-0



Polynomials of the form x^k quickly become very steep. There are much better polynomial bases : e.g. Chebyshev, Hermite, ...

Mean squared error for polynomial models



Is MSE a good measure of the error ? Why integrating on [-4, +4] ?

Domain

- should be related to the input data distribution.

Metric

- Uniform metric: L_{∞}
- Averaged with a L_p norm, e.g. MSE.

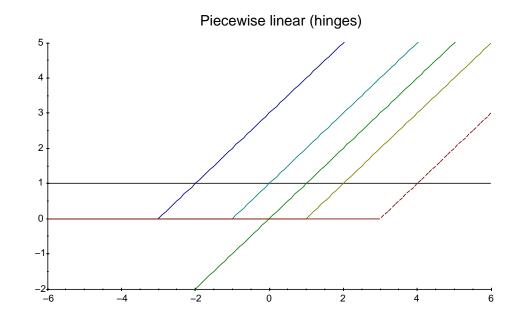
Derivatives

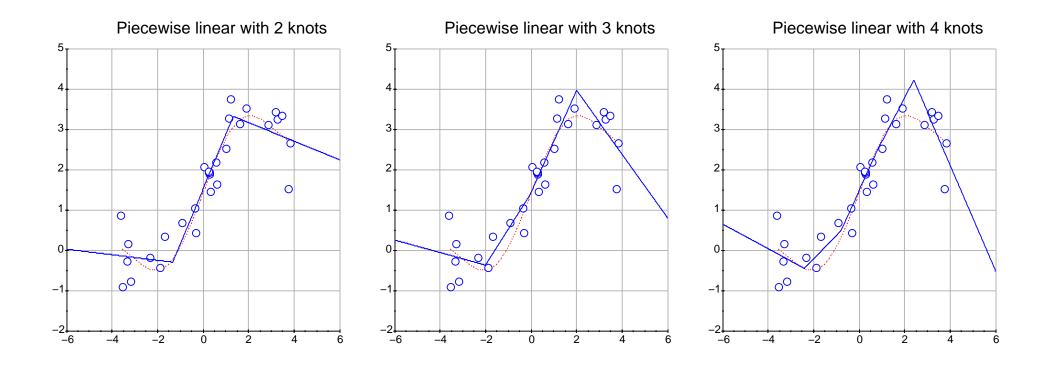
- Very close functions can have very different derivatives.
- Sobolev metrics.

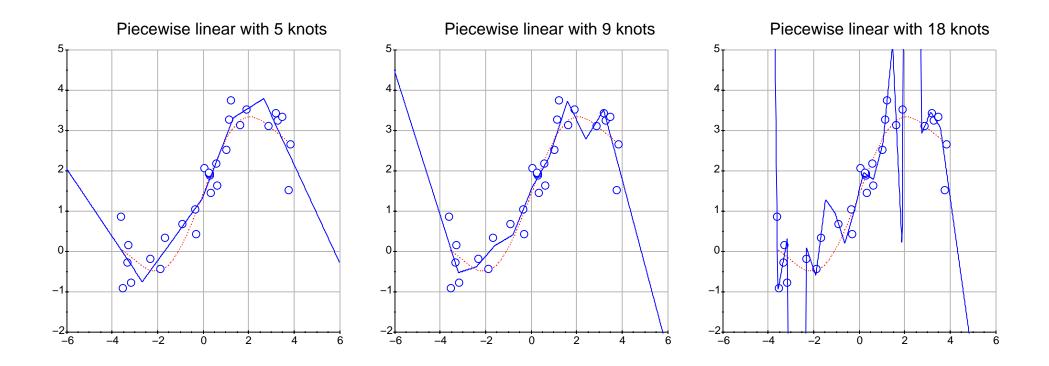
Integrals

- Conversely, very close functions always have very close integrals.

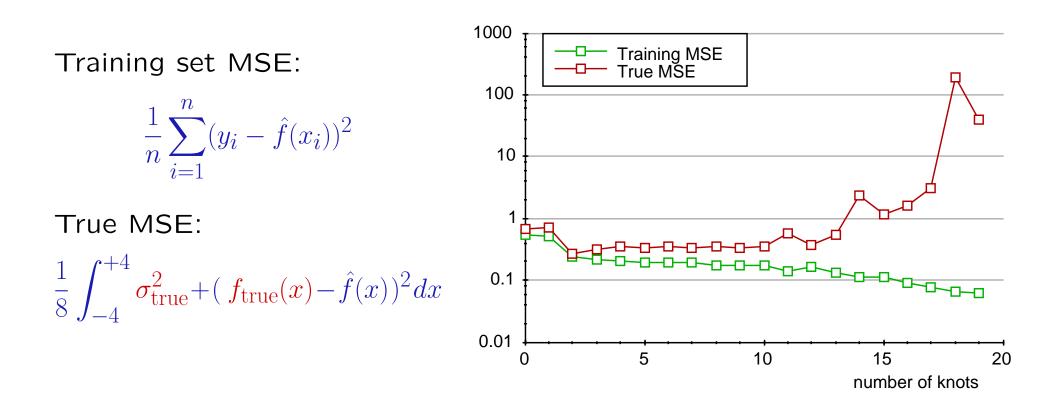
Choose knots $r_1 \dots r_k$ $\phi_0(x) = 1$ $\phi_1(x) = x$ $\phi_2(x) = \max(0, x - r_1)$ \dots $\phi_j(x) = \max(0, x - r_{j-1})$





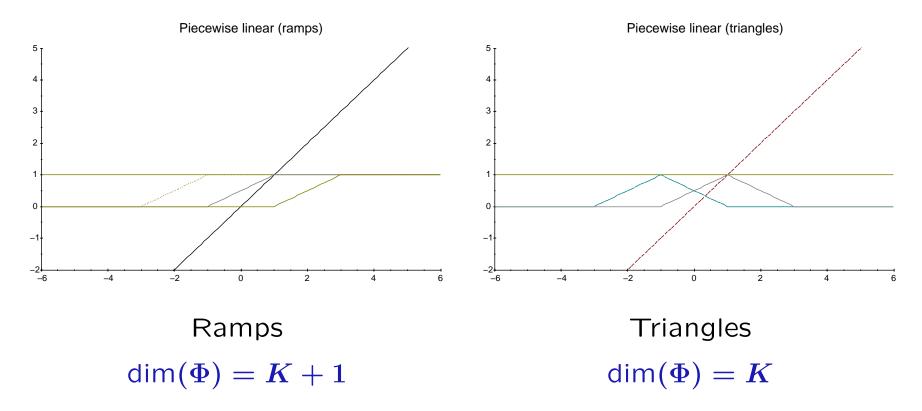


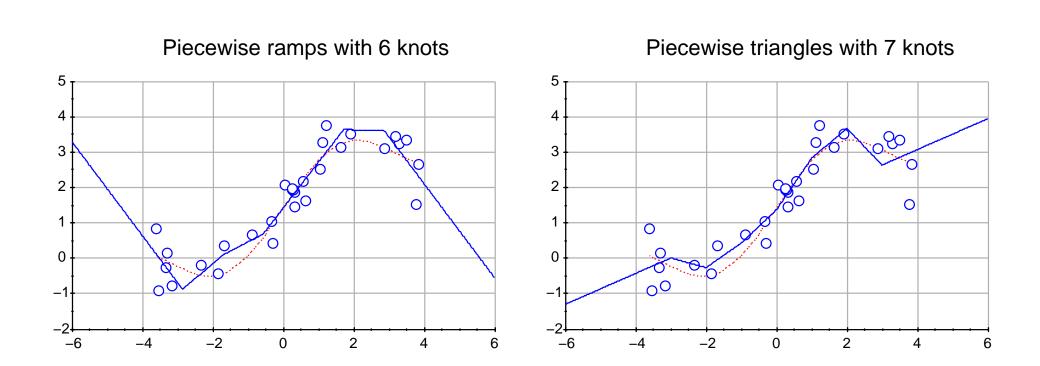
MSE for Piecewise Linear Models



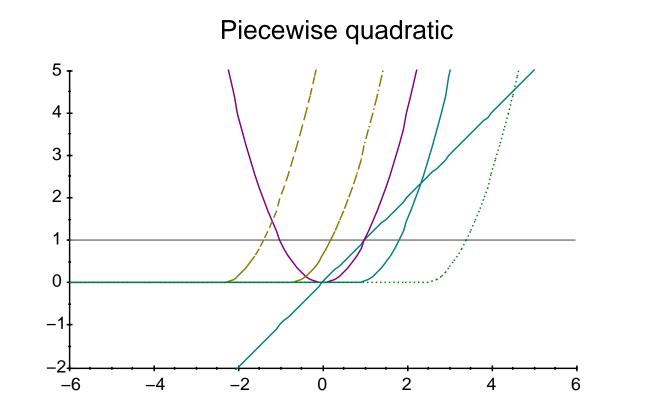
Counting the dimensions

- Linear functions on K + 1 segments: 2K + 2 parameters.
- Continuity constraints: K constraints.
- Other constraints: 0 (hinges), 1 (ramps), 2 (triangles).

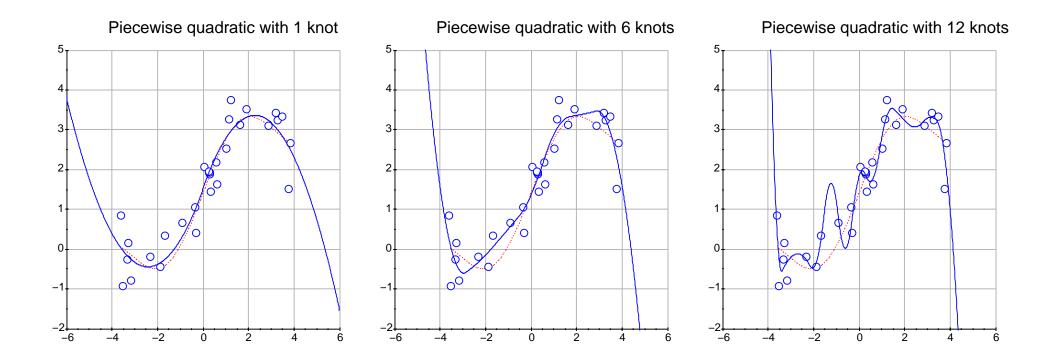


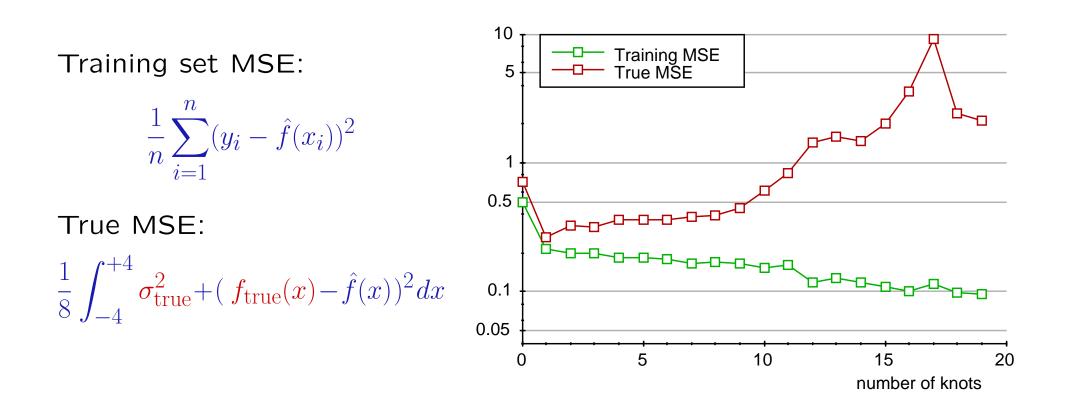


Piecewise Polynomial (Splines)

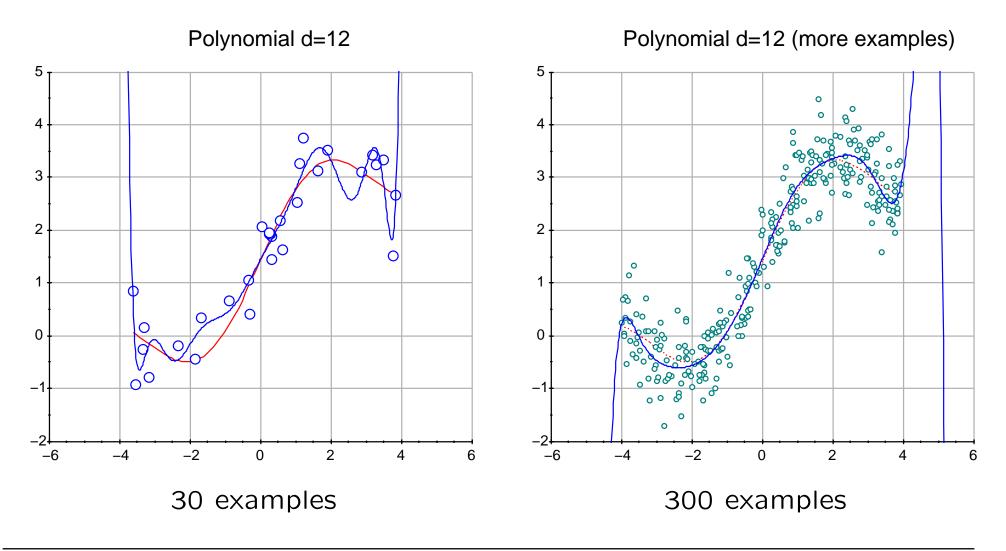


- Quadratic splines : $\Phi(x) = 1, x, x^2, \dots \max(0, x - r_k)^2 \dots$ - Cubic splines : $\Phi(x) = 1, x, x^2, x^3, \dots \max(0, x - r_k)^3 \dots$

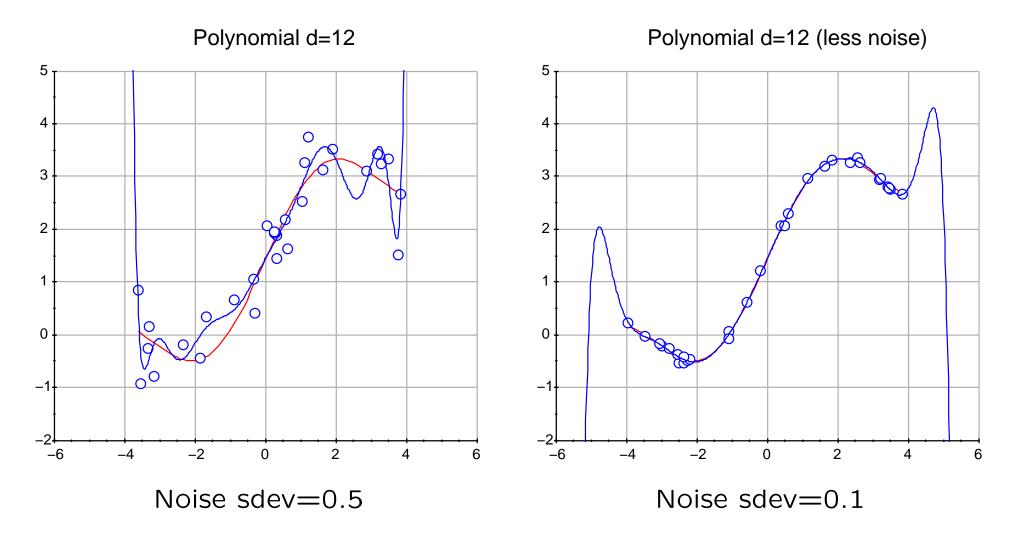




Changing the training data: more examples



Changing the training data: less noise



The fancier the models, the higher the price.

- We can pay with more data.
- We can pay with better data.

In practice we do the converse.

- Changing the data is usually more costly than changing the model.
- Adapt the model "capacity" to the data.
- No shortage of methods.

The validation questions.

- We have too many options. How to choose one?
- How to estimate the quality of our work?

Performance on the training data is not convincing

- Cannot distinguish between learning by rote and understanding.
- Understanding leads to more useful predictions than learning by rote.
- Therefore we need fresh data to evaluate our work.
- Testing examples set aside before starting the work.
 - Statistics work for randomly picked testing examples.
 - Real life suggests selected testing examples (e.g. time series.)

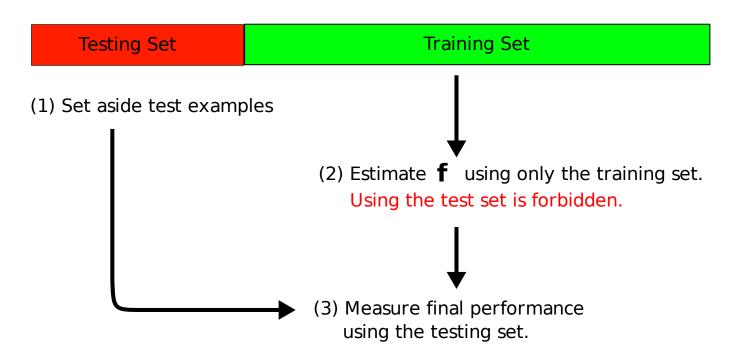
• Testing data of a different nature.

- New perspective on the same phenomenon.
- Often more instructive and convincing.

What about the "elegance" of a model?

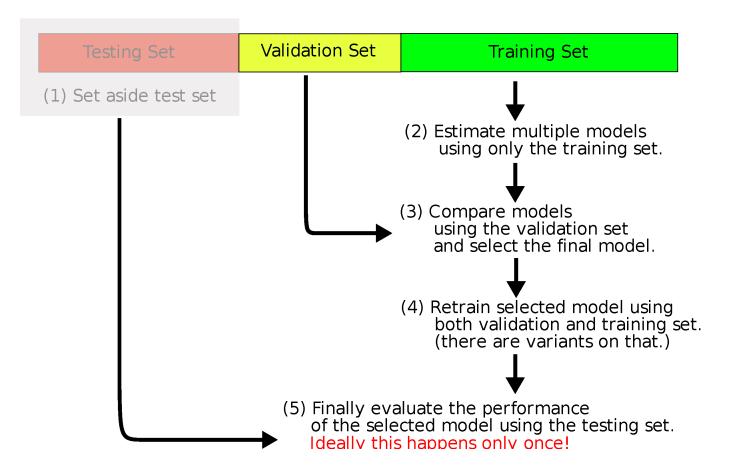
- Einstein: "Make everything as simple as possible, but not simpler."
- How do you define "simple" ?

The "training set/testing set" paradigm



- One should only use the testing set once! Of course...
- The more we look at the testing set, the less convincing we are.
- Public benchmarks and their problems.

How to select the right model without looking at the testing set?



All this consumes valuable examples!

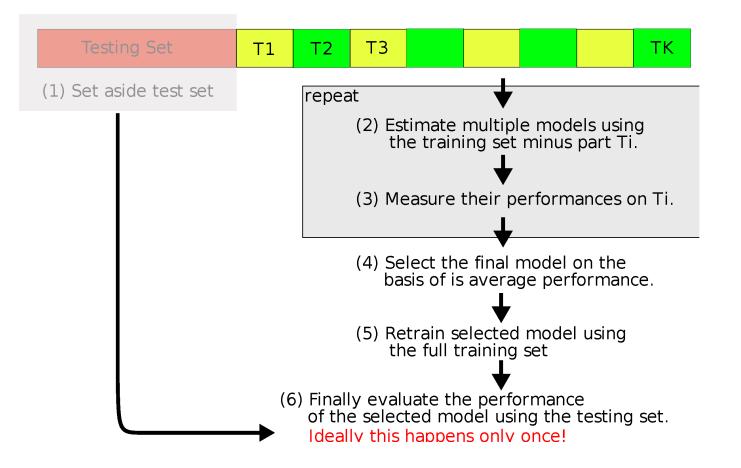
– This is a serious problem when examples are rare!

What is the optimal size of the testing set?

- Large enough to measure the performance with sufficient accuracy.

What is the optimal size of the validation set?

- Large enough to justify our model selection, but not larger !
- Depends on the number of models to compare.
- Depends on the data needs of the models we compare.
- Depends on the total size of the data set.
- Trial and errors...



All this consumes valuable computing time!

- This is a serious problem when examples are abundant.

How accurate is k-fold cross-validation?

- More than using a single parition as validation set.
- Less than using a validation set as large as the training set.
- The statistical properties of the procedure are unclear.

Suggestions

- Avoid k-fold cross validation for very large datasets.
- Observe the variations of measured performances on the folds.

Subtleties

- Evaluating the performance of a trained model.
- Evaluation the performance of a training procedure.

$$egin{array}{rcl} x & \longrightarrow & \Phi(x) = egin{bmatrix} \phi_0(x) \ \phi_1(x) \ \cdots \ \phi_n(x) \end{bmatrix} & \longrightarrow & f(x) = [w_0,w_1,\ldots,w_n] imes egin{bmatrix} \phi_0(x) \ \phi_1(x) \ \cdots \ \phi_n(x) \end{bmatrix}$$

Given suitable basis functions Φ , the inputs x could be anything.

- numerical variables, e.g. 3.1415
- categorical variables, e.g. blue, green, yellow, ...
- ordered variables, e.g. small, medium, large.
- complex data structures, such as trees, graphs, etc.
- any combination of the above.

This does not mean that constructing the features $\phi_i(x)$ will be easy.

Predict whether income exceeds \$50K/year (y = +1) or not (y = -1).

http://archive.ics.uci.edu/ml/datasets/Adult

Input variables

- 6 continuous variables :

age, years of education, hours-per-week, capital-gains, capital-losses, fnlwgt(?).

- 8 categorical variables :

workclass, education, marital status, sex, occupation, race, relationship, native country.

Training and testing sets

- Training set: 32561 examples
- Testing set: 16281 examples

Creating $\Phi(\mathbf{x})$ for the adult dataset

Coding on 1+123 binary features $\phi_i(x)$

- First feature is always $\phi_1(x) = 1$.
- One feature for each possible value of each categorical variable.
- Five features for each continuous variable (quantified on 5 quantiles).

copied from (Platt, 1998)

Split

- -28000 training +4562 validation examples.
- 16281 testing examples.

Results

Experiment	Misclassification
Validation set (after training on 28K)	15.98 %
Testing set (after training on 32K)	15.47 %

Coding on 1+123+7503 features

- Additional features for quadratic models.

 $\forall i \in 1 \dots 123 \quad \forall j \in 1 \dots i-1 \quad \phi_{ij}(x) = \phi_i(x)\phi_j(x)$

Remarks

- Feature count grows quickly.
- This is slow (X is sparse, but $X^{\top}X$ is not.)

Results

Experiment	Misclassification
Validation set (after training on 28K)	16.40 %
Testing set (after training on 32K)	— %

Idea

Remember the regularization + cholevsky trick?

$$\min \ C(w) + \varepsilon w^2 \iff (\ X^\top X + \varepsilon I \) \ w = (\ X^\top Y \)$$

Let's penalize more the coefficients of the quadratic terms.

$$\min \ C(w) + w^{ op} \Lambda w \iff (\ X^{ op} X + \Lambda \) \ w = (\ X^{ op} Y \)$$

Details

 $-\varepsilon = 10^{-5}$ for constant and linear terms. $-\varepsilon \in [10^{-5}, 10^5]$ for quadratic terms.

Weighting the quadratic terms

18 Training set Validation set 17 16 15 14 13 12 0.1 10 100 0.01 1 1000 epsilon (quadratic terms)

We get the linear result when $\varepsilon \to \infty$.

We get the quadratic result when $\varepsilon \to 0$.

After retraining with $\varepsilon = 100$ on all 32K examples: Testing set error: 14.93 %.

percent error

Coming next

Homework 1

- Due on Tue Feb 23rd.
- Something about splines.

Next lectures

- Tuesday Feb 9th: R tutorial (Sean Gerrish)
- Thursday Feb 11th: Review of probabilities