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Introduction

Useful things:

– understanding probabilities,

– understanding statistical learning theory,

– knowing countless statistical procedures,

– knowing countless machine learning algorithms.

Essential things:

– applying common sense,

– paying attention to details,

– being able to setup experiments,

– and to measure the outcome of experiments,

– and to measure plenty of other things,
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Connecting the dots

Question:

Find y given x.

x y
0.31 1.87
0.25 1.84
3.78 2.23
3.30 3.04
3.83 2.68

-3.29 0.01
-0.90 0.37
-3.61 0.37
0.64 2.05

-0.34 0.96
. . .

Léon Bottou 3/45 COS 424 – 2/4/2010



Connecting the dots

Question:

Find y given x.

x y
0.31 1.87
0.25 1.84
3.78 2.23
3.30 3.04
3.83 2.68

-3.29 0.01
-0.90 0.37
-3.61 0.37
0.64 2.05

-0.34 0.96
-3.53 -0.35
1.63 3.18

. . . . . . . . .

Answer:

Connect the dots. Read the curve.
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Connecting the dots – take two

Question: Find y given x.

[x]1 [x]2 [x]3 [x]4 [x]5 [x]6 [x]7 [x]8 . . . [x]13,123 [x]13,124 [x]13,125 y

0.39 0.50 5.84 -4.36 -0.01 7.20 -7.40 -7.16 . . . -5.48 0.77 5.03 5.46
7.34 1.92 -5.66 -5.33 -6.15 -3.14 4.53 6.37 . . . -2.30 6.45 5.10 5.18
2.27 4.57 4.18 -6.07 -5.47 -6.97 2.67 -3.93 . . . 2.77 7.46 4.84 6.97
1.09 -2.17 -6.38 5.66 -2.65 -2.81 -0.69 2.76 . . . 0.42 5.88 0.29 -7.13
2.85 1.79 6.22 1.34 -1.83 3.01 3.99 -1.75 . . . 0.03 1.55 -3.32 -5.42

-5.67 2.53 -3.47 -0.46 3.21 -2.73 6.65 -0.77 . . . -1.41 -3.93 3.14 5.37
3.80 -0.00 1.89 3.24 2.30 -1.45 7.63 -2.12 . . . 6.47 2.04 3.58 -4.96
7.54 2.47 6.39 4.95 -2.51 -6.46 0.49 -0.61 . . . 5.10 1.90 1.79 3.20

-7.99 4.93 -2.13 -7.11 -5.10 2.13 6.31 7.00 . . . 1.71 -2.35 -7.87 -4.70
-6.80 7.33 -0.99 4.17 -7.81 -7.64 4.01 -3.37 . . . 7.29 -2.41 7.66 -6.70
-0.78 5.34 -5.94 -1.76 3.79 2.92 0.75 7.04 . . . -3.87 -1.46 -3.37 -3.66
7.54 2.47 6.39 4.95 -2.51 -6.46 0.49 -0.61 . . . 5.10 1.90 1.79 3.20

-7.99 4.93 -2.13 -7.11 -5.10 2.13 6.31 7.00 . . . 1.71 -2.35 -7.87 -4.70
-6.80 7.33 -0.99 4.17 -7.81 -7.64 4.01 -3.37 . . . 7.29 -2.41 7.66 -6.70
. . . . . . . . . . . . . . . . . .

Idea: (1) understand how we do the 2D case. (2) generalize !
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A Simple Linear Model

Polynomial: f(x) = w0 + w1x+ w2x
2 + · · ·+ wnx

n

Slight generalization:

x −→ Φ(x) =


φ0(x)
φ1(x)
· · ·

φn(x)

 −→ f(x) = [w0, w1, . . . , wn]×


φ0(x)
φ1(x)
· · ·

φn(x)



Equivalently: f(x) = w>Φ(x)

Lets choose a basis Φ and use the data to determine w.
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Linear Least Squares

Input : xi
Output : w>Φ(xi)

Desired Output : yi

Difference : yi − w>Φ(xi)

Minimize : C(w) =
n∑
i=1

(
yi − w>Φ(xi)

)2
Quadratic convex function in w.

The minimum exists and is unique.

But it could be reached for multiple values of w.
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A little bit of Linear Algebra

At the optimum,
dC

dw
=

n∑
i=1

2
(
yi − w>Φ(xi)

)
Φ(xi)

> = 0

Therefore we must solve the system of equations : n∑
i=1

Φ(xi)Φ(xi)
>

× w =

 n∑
i=1

yiΦ(xi)



Shorthand form : (X>X ) w = (X>Y )
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Singularities

Almost the same as w = (X>X )−1 (X>Y ).

You should never solve a system by inverting a matrix.

Who said X>X is invertible?

Consider the case where φ1(x) = φ8(x)

– the matrix X>X is singular.

– but the minimum is unchanged.

– the minimum is reached by many w,

as long as w1 + w8 remains constant.

Among the w that minimize C(w),

compute the one with the smallest norm.
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Numerical Procedures

Diagonalization of X>X

Q>D Qw = X>Y ⇐= w = Q>D+ QX>Y

Traditional methods: SVD or QR decomposition of X

V D U> U D V > w = V D U> Y ⇐= w = V D+ U>Y

R>Q>QR w = R>Q>Y ⇐= R w = Q>Y

and solve using back-substitution.

Simple and Fast: Regularization + Cholevsky

min C(w) + εw2 ⇐⇒ (X>X + εI ) w = (X>Y )

⇐⇒ U U>w = (X>Y )

and solve using two rounds of back-substitution.
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Polynomial degree 1

Φ(x) = 1, x
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Polynomial d=1
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Polynomial degree 2

Φ(x) = 1, x, x2
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Polynomial d=2
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Polynomial degree 3

Φ(x) = 1, x, x2, x3
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Polynomial d=3
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Polynomial degree 6

Φ(x) = 1, x, x2, x3, x4, x5, x6
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Polynomial degree 9

Φ(x) = 1, x, x2, . . . , x9
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Polynomial d=9
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Polynomial degree 12

Φ(x) = 1, x, x2, . . . , x12
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Polynomial d=12
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Polynomial degree 20

Φ(x) = 1, x, x2, . . . , x20
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Polynomial Basis
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Polynomial basis

Polynomials of the form xk quickly become very steep.
There are much better polynomial bases : e.g. Chebyshev, Hermite, . . .
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Mean squared error for polynomial models

Training set MSE:

1

n

n∑
i=1

(yi − f̂ (xi))
2

True MSE:

1

8

∫ +4

−4
σ2

true+( ftrue(x)−f̂ (x))2dx

0.01

0.1

1

10

100

1000

10000

100000

0 5 10 15 20
polynomial degree

Training MSE
True MSE

Is MSE a good measure of the error ?

Why integrating on [−4,+4] ?
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About Error Measures

Domain

– should be related to the input data distribution.

Metric

– Uniform metric: L∞
– Averaged with a Lp norm, e.g. MSE.

Derivatives

– Very close functions can have very different derivatives.

– Sobolev metrics.

Integrals

– Conversely, very close functions always have very close integrals.
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Piecewise Linear Basis

Choose knots r1 . . . rk

φ0(x) = 1

φ1(x) = x

φ2(x) = max(0, x− r1)

. . .

φj(x) = max(0, x− rj−1)
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Piecewise linear (hinges)
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Piecewise Linear Models
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Piecewise Linear Models
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Léon Bottou 23/45 COS 424 – 2/4/2010



MSE for Piecewise Linear Models

Training set MSE:

1

n

n∑
i=1

(yi − f̂ (xi))
2

True MSE:

1

8

∫ +4
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σ2

true+( ftrue(x)−f̂ (x))2dx
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Piecewise Linear Variants

Counting the dimensions
- Linear functions on K + 1 segments: 2K + 2 parameters.
- Continuity constraints: K constraints.
- Other constraints: 0 (hinges), 1 (ramps), 2 (triangles).
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Piecewise linear (triangles)

Ramps Triangles

dim(Φ) = K + 1 dim(Φ) = K
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Piecewise Linear Variants
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Piecewise Polynomial (Splines)
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Piecewise quadratic

– Quadratic splines : Φ(x) = 1, x, x2, . . . max(0, x− rk)2 . . .
– Cubic splines : Φ(x) = 1, x, x2, x3, . . . max(0, x− rk)3 . . .
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Quadratic Splines
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Piecewise quadratic with 1 knot
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Piecewise quadratic with 6 knots
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Piecewise quadratic with 12 knots
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MSE for Quadratic Splines

Training set MSE:

1

n

n∑
i=1

(yi − f̂ (xi))
2

True MSE:
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Changing the training data: more examples

−2

−1

0

1

2

3

4

5

−6 −4 −2 0 2 4 6

Polynomial d=12
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Changing the training data: less noise
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Polynomial d=12
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Polynomial d=12 (less noise)

Noise sdev=0.5 Noise sdev=0.1
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First Conclusions

The fancier the models, the higher the price.

– We can pay with more data.

– We can pay with better data.

In practice we do the converse.

– Changing the data is usually more costly than changing the model.

– Adapt the model “capacity” to the data.

– No shortage of methods.

The validation questions.

– We have too many options. How to choose one?

– How to estimate the quality of our work?
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Estimate the quality of our work

Performance on the training data is not convincing
– Cannot distinguish between learning by rote and understanding.
– Understanding leads to more useful predictions than learning by rote.
– Therefore we need fresh data to evaluate our work.

• Testing examples set aside before starting the work.
– Statistics work for randomly picked testing examples.
– Real life suggests selected testing examples (e.g. time series.)

• Testing data of a different nature.
– New perspective on the same phenomenon.
– Often more instructive and convincing.

What about the “elegance” of a model ?
– Einstein:“Make everything as simple as possible, but not simpler.”
– How do you define “simple” ?
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The “training set/testing set” paradigm
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– One should only use the testing set once! Of course. . .

– The more we look at the testing set, the less convincing we are.

– Public benchmarks and their problems.
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The “validation set”

How to select the right model without looking at the testing set ?
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Potential problems

All this consumes valuable examples!

– This is a serious problem when examples are rare!

What is the optimal size of the testing set ?

– Large enough to measure the performance with sufficient accuracy.

What is the optimal size of the validation set ?

– Large enough to justify our model selection, but not larger !

– Depends on the number of models to compare.

– Depends on the data needs of the models we compare.

– Depends on the total size of the data set.

– Trial and errors. . .
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K-fold cross validation
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Potential problems

All this consumes valuable computing time!
– This is a serious problem when examples are abundant.

How accurate is k-fold cross-validation?
– More than using a single parition as validation set.
– Less than using a validation set as large as the training set.
– The statistical properties of the procedure are unclear.

Suggestions
– Avoid k-fold cross validation for very large datasets.
– Observe the variations of measured performances on the folds.

Subtleties
– Evaluating the performance of a trained model.
– Evaluation the performance of a training procedure.
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Beyond Curve Fitting

x −→ Φ(x) =


φ0(x)
φ1(x)
· · ·

φn(x)

 −→ f(x) = [w0, w1, . . . , wn]×


φ0(x)
φ1(x)
· · ·

φn(x)



Given suitable basis functions Φ, the inputs x could be anything.

– numerical variables, e.g. 3.1415

– categorical variables, e.g. blue, green, yellow, . . .
– ordered variables, e.g. small, medium, large.
– complex data structures, such as trees, graphs, etc.
– any combination of the above.

This does not mean that constructing the features φi(x) will be easy.
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The “adult” dataset

Predict whether income exceeds $50K/year (y = +1) or not (y = −1).

http://archive.ics.uci.edu/ml/datasets/Adult

Input variables

– 6 continuous variables :
age, years of education, hours-per-week,
capital-gains, capital-losses, fnlwgt(?).

– 8 categorical variables :
workclass, education, marital status, sex,
occupation, race, relationship, native country.

Training and testing sets

– Training set: 32561 examples
– Testing set: 16281 examples
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Creating Φ(x) for the adult dataset

Coding on 1+123 binary features φi(x)
– First feature is always φ1(x) = 1.
– One feature for each possible value of each categorical variable.
– Five features for each continuous variable

(quantified on 5 quantiles).
copied from (Platt, 1998)

Split
– 28000 training + 4562 validation examples.
– 16281 testing examples.

Results

Experiment Misclassification
Validation set (after training on 28K) 15.98 %
Testing set (after training on 32K) 15.47 %

Léon Bottou 41/45 COS 424 – 2/4/2010



A quadratic basis for the adult dataset

Coding on 1+123+7503 features

– Additional features for quadratic models.

∀i ∈ 1 . . . 123 ∀j ∈ 1 . . . i− 1 φij(x) = φi(x)φj(x)

Remarks

– Feature count grows quickly.

– This is slow (X is sparse, but X>X is not.)

Results

Experiment Misclassification
Validation set (after training on 28K) 16.40 %
Testing set (after training on 32K) — %
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Weighting the quadratic terms

Idea
Remember the regularization + cholevsky trick?

min C(w) + εw2 ⇐⇒ (X>X + εI ) w = (X>Y )

Let’s penalize more the coefficients of the quadratic terms.

min C(w) + w>Λw ⇐⇒ (X>X + Λ ) w = (X>Y )

Details
– ε = 10−5 for constant and linear terms.
– ε ∈ [10−5, 105] for quadratic terms.
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Weighting the quadratic terms

12
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0.01 0.1 1 10 100 1000
epsilon (quadratic terms)

percent error

Training set
Validation set

We get the linear result

when ε→∞.

We get the quadratic result

when ε→ 0.

After retraining with ε = 100 on all 32K examples:

Testing set error: 14.93 %.
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Coming next

Homework 1

– Due on Tue Feb 23rd.

– Something about splines.

Next lectures

– Tuesday Feb 9th: R tutorial (Sean Gerrish)
– Thursday Feb 11th: Review of probabilities
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