
COS 424 Lecture 2:

Connecting the dots with common sense and linear models

Scribe: Michael Gelbart

Lecture date: February 4, 2010

1 Introduction
We can begin without thinking about probabilities, but just by asking the simple question: how can we
predict y = f(x) given some data x? We are used to just drawing a curve through the data and then
using the curve to predict new outcomes (see image on Slide 4), but what if you have high-dimensional
data? We cannot easily visualize such a “curve”. Can we learn something from the 1-d case and extend
it to higher dimensions?

2 A simple linear model
Yes, we can try to do this with a simple polynomial model

f(x) = w0 + w1x + w2x
2 + ... + wnxn

where we use the data to determine the coefficients wj and the model depends linearly on these
coefficients. We can generalize this to using more complicated basis functions than these polynomials.
In general we might have

f(x) = w0φ0(x) + w1φ1(x) + w2φ2(x) + ... + wnφn(x)

or, written more compactly:
f(x) = wTΦ(x)

where w and Φ are now vectors as defined on Slide 6.
Given some model Φ(x), we still need a method to determine the vector of coefficients w. To do

this, we compare the real values of the data with the output from the model for some inputs x. A
common method is to find the least squares minimum: i.e., the vector w that minimizes the sum of
squared distances between the training data points and the predicted points from the model. The
objective then takes the form

C(w) =
n�

i=1

(yi − wTΦ(xi))2

Because this quadratic objective function is convex, there is a unique minimum value of w. By taking
the derivative with respect to w, we see that the optimum value of w satisfies

(XTX)w = XTY

where X and Y are defined as follows:

1

X ≡





φ1(x1) φ2(x1) · · · φn(x1)
φ1(x2) φ2(x2) · · · φn(x2)

...
...

. . .
...

φ1(xn) φ2(xn) · · · φn(xn)




, Y ≡





y1

y2
...

yn





It seems that we can solve for w by computing w = (XTX)−1XTY , but computing the inverse is a
bad idea because XTX is not necessarily invertible. For example, if we pick two basis vectors to
be same (say, φ1 = φ8) then we have a redundancy and the matrix is singular (because (XTX)−1 =
X−1(XT)−1). We want to be robust to these kinds of redundancies, since with this basis we should
still be able to get a (non-unique) solution that does the job. Then we break the ties by picking the w
with the smallest norm.

Slide 10 shows several numerical procedures for solving w without inverting XTX: diagonalization,
and SVD and QR decompositions. Notation: on the slide, D+ refers to the pseudo-inverse of the
diagonal matrix D, meaning that all non-zero entries of D are inverted and all zero entries remain as
zero. Also, Q, U, and V refer to orthogonal matrices and R refers to a triangular matrix. Methods
like SVD are nice because you don’t have to deal with the potentially messy matrix XTX. The final
method introduces an artificial “tie-breaking” term �w2 into the objective function. For sufficiently
small �, this term ensures that the w with the smallest norm is chosen in redundant cases like the one
discussed above. In other words, this method assures that our matrix in question, now XT X + �I is
no longer singular, so we can solve the system without further precaution, with any available method.
The error introduced by this method is not a problem for � ∼ 10−5 in reasonable units.

3 Bigger not always better
Slides 11-17 show polynomial fits of different orders to the data. The cubic fit looks the most “reason-
able” because the high order polynomials are overfitting the data. One problem with this is that due
to being higher order they are extremely steep outside the domain of the training data points such
that they may introduce extremely large error for test points outside this domain. E.g., for a degree
20 polynomial, 220 ∼ 106 so even on the domain −2 ≤ x ≤ 2 we are adding and subtracting really big
numbers (analogy to a “highly loaded spring”). Thus if we have a new point at x = 5, the high order
fits would predict some enormous number for y (keeping in mind that 520 ∼ 1014), and this behavior
goes against our intuition (and is indeed incorrect in this case). Thus there may be better bases to use
that do not become so steep, such as the Chebyshev or Hermite polynomials.

4 Evaluating the models
We have discussed the pros and cons of some models, but we should come up with some metric
of evaluating them quantitatively. One metric is the mean squared error (MSE) of the test model,
computed by

MSEtraining =
1
n

n�

i=1

(yi − f̂(xi)2

where f̂(x) = wTΦ(x), the predicted value from the model. The true MSE just becomes an integral

MSEtrue =
1

xmax − xmin

ˆ xmax

xmin

σ2
true + (ftrue(x)− f̂(x))2dx

Here the noise is added in because we want to produce a number that is compatible with the error
we would get if we computed the MSE of our model on a large testing set. For example, if our model

2

is exactly correct, we would still not get an MSE of zero on a test set because of the noise. Thus we
include the extra term here as well.

From this metric it appears that higher order polynomials do increasingly well. However, since
we know the true function in this case, we can compute the true MSE and we see that it increases
dramatically with higher order. In this case the minimum of the true MSE occurs for degree 3 (see
the graph on Slide 19).

However, the MSE is not necessarily the best choice here. For example, in this case we are weighting
the domain uniformly when taking the integral. However, if the data points do not come uniformly then
we would like to modify this by weighting the error metric with the distribution of x. For training, we
are implicitly giving higher weight to those regions with more points and so a non-uniform distribution
is ok. However, we might have the distributions for the training and test sets not equal, and then we
have a problem. Example in class: handwriting recognition. We my collect data from some writers
and then want it to work for others. Some benchmark data sets address this problem by mixing data
from many writers in both the training and test sets.

Some more error metrics are described on Slide 20. The uniform metric L∞ finds the biggest
difference between the two curves over the whole domain. We can also use Lp norms other than
L2; i.e., integrate the function (f − f̂)p for some values of p other than 2. Larger p penalizes bigger
deviations (so the notation L∞ makes some sense now).

5 Piecewise linear models
If we don’t like that polynomials get too steep, we can try piecewise linear models. Such a model is
described by k knots separating k + 1 lines. Each line is described by two parameters for a total of
2(k +1) = 2k +2 parameters. However, we have the continuity constraint which gives us one equation
at each knot, for a total of k constraints. Thus we are left with k+2 parameters for k knots. Note that
the knots are not parameters here– they are chosen a priori and the parameters come from specifying
the line segments.

Slides 22-23 show that like polynomials, things get worse when we give the model too much freedom
(in this case, by making k too large). However, things aren’t as bad as for the polynomials (see slide
24). This time the MSE is minimized for k = 2. Slide 26 shows a restatement of the basis in terms of
ramps or triangles, but in the end they are all piecewise linear functions.

6 Splines
Of course there are lots of other bases we could choose, but one more common one is the piecewise
polynomial or “spline”. The quadratic spline basis is {1, x, x2, · · · ,max(0, x− rk)2}. See slide 27 for a
drawing. For k knots we get k + 1 parabolas, each with 3 parameters, for a total of 3k + 3. Then the
knots introduce 2k constraints: k for continuity and k for the continuity of the derivative. Thus we
have a total of k + 3 dimensions. As always, overfitting is bad (see slide 28), but not nearly as bad as
with the other bases: see slide 29, and in particular the scale of the y-axis of the graph. The reason the
spline does well is that it is smooth (we imposed continuity of the derivative) and the true function is
also smooth. Finally, note that the red curve begins to dip for large k: this is just noise, do not trust
it.

7 Changing the data
Of course one way to do better is just add more examples. Slide 30 shows the improvement when using
300 examples instead of 30. Slide 31 shows the improvement when the noise σ is reduced from 0.5 to
0.1. But of course if we could just play with the noise, we wouldn’t need to do anything in the first
place... we could just set σ = 0 and be done.

3

In short, there is always a cost to improving the model, and the cost is either more data or better
data. The best solution is to take the best data you can on the first try, and then take a model with
complexity well matched to the data.

8 Estimating the quality of our work
In what we were just doing, we already knew the true function, and that is of course an unrealistic
scenario when generating models and evaluating performance. Furthermore, we do not want to evaluate
the performance of the model using the training data, because this just tests its ability to reproduce
something it already learned from, not its ability to make valid predictions on new data (analogy
with “learning by heart” - we can’t analyze new problems this way). Thus we want to test our model
on fresh data, but how do we get it? Answer: we can separate the data set at the beginning, e.g.,
2/3 for training, 1/3 for testing. But there are other methods than this. For example, we can make
measurements using a totally different phenomenon. Example in class: we have a protein soup, and
we put it in a machine that does mass spectrometry. We want to find what’s in the soup. Since we
need delicate accuracy, mass spec is probably the most sensitive, but we don’t have much test data.
So we turn to other methods of checking what proteins are inside the soup: we can use fluorescent /
radioactive markers, or look it up in the literature, or do PCR, etc.. So we can validate the model
we built from the mass spec data with a different style of measurement. (But for the purposes of this
courses, we will just be using data that we set aside).

And now, the all-important fact: test sets should only be used once! Example in class: results
based on the UCI data base improve every year... is this because algorithms are really getting better,
or because the test set is compromised? We can get fancier by also using a validation set. First, train
a bunch of models on the training data. Then pick the best of these models using the validation set.
Then re-train that model using the training and validation data together. Finally, test on the test set.

This all sounds great but it uses up a lot of examples, and these can be expensive. E.g., medical
tests where one data point is one person or in some geology studies where drilling to get one data point
can cost millions.

There are also some issues of the size of the validation set, if we are going to use one. Splitting
1
3 - 1

3 - 1
3 is common and might be reasonable. But in general we want to be barely able to discern which

model is best at the validation phase, so if we can tell easily then we have too much validation data,
and if we cannot tell then we have too little. See slide 37 for a more complicated scheme called k -fold
cross validation. In this scheme you take all data except one block Ti and train. Then test on Ti and
do this for all i. Then take the average over the k cases and pick the best model. Finally, retrain using
the whole training set. This is works pretty well but is computationally expensive. Thus it should be
avoided for large data sets, but that is ok because we don’t need such a complicated scheme when data
is abundant anyway.

9 Beyond curve fitting
What if our data is not a bunch of numbers, but rather categorical variables or even complex data
structures? This seems like a mess, but really all we need to do is choose Φ(x) and then everything
else is the same. Of course, this doesn’t mean that choosing Φ is easy.

Slide 40 shows the “adult” data set for predicting whether or not a person makes >$50k/yr. Our
input vectors x are just lists of the relevant attributes, such as {age = 30, sex = male, native country =
Canada, ... }. First, we choose our feature basis φ(x) such that each one corresponds to an individual
attribute. For example, one of them is 1 if profession = taxi driver, and 0 otherwise; another is 1 if
profession = baker, 0 otherwise, another is 1 if sex = male, 0 otherwise; etc. We bin the continuous
variables into 5 bins each so they they also become discrete; after doing so, we get a total of 123
different possible properties (5 from each of the continuous variables, and the rest from the categorical
variables). The whole basis then has 1+123=124 elements (the first one being φ1(x) = 1). Note that

4

these φi(x) are not vectors; they are simply numbers taking on the values 0 or 1. Φ(x) is a vector of
length 124, and the product wTΦ is a real number. We then take the sign of this number to get y.

Once we have these φi(x) we can solve for w with the usual methods. When we solve, the magnitude
of each entry in w will tell us how good a predictor each property is. For example, if the entry
corresponding to profession = investment banker is very large in magnitude, then the fact that someone
is an investment banker tells you a lot about whether or not their income is above $50k/yr. The sign
of the entries of w tell us the sign of the correlation, i.e., if the investment banker entry is positive
it means that being an investment banker makes you more likely to make over $50k/yr and if it is
negative it means it makes you less likely.

We mentioned above that wTΦ(x) outputs a real number, and so to find y we must threshold the
result by taking the sign of wTΦ(x). Since Φ(x) contains only ones and zeros, negative elements in
w will result in the product wTΦ(x) being more negative, and positive values of w will make it more
positive. This is why I was able to say that the sign of the coefficients w told us if the correlation
was positive or negative. Of course, we could have picked a threshold other than zero, such as +3.
In this case the resulting w would be the same, except that its first entry (the one corresponding to
φ1(x) = 1) would just be increased by 3 such that the product wTΦ(x) would also be increased by 3
for all x. Thus the choice of threshold is arbitrary because it will be encoded in the first entry of w
(and only in the first entry!). Given this freedom, the choice of zero as the threshold is most natural
because it gives a meaningful interpretation to the sign of the elements of w.

And now, back to the performance of this model. After validating and retraining with this basis
we get a misclassification rate of 15.47%. To improve on this, we try adding more features. Now we
include one feature for each unique pair so that we get an additional 123(123− 1)/2 = 7503 features.
These features are the product of the individual features, which is like the logical AND. This basis is
a little redundant because we will get lots of φi(x) that are zero for all x (e.g., male AND female = 0).
This is ok though, because our numerical methods can handle these degenerate cases as discussed in
slide 10 (we discussed the case of two identical basis vectors, but having a basis vector equal to zero
is the same as having two identical basis vectors since you can just subtract the two identical ones to
get the zero vector).

When using this larger basis the fitting takes too long to run because X is an ∼8000-dimensional
matrix so XTX has ∼16 million entries. To help with this, we can use sparse matrix representation,
but we still have to “invert” at the end (solve system) and this takes ∼20 mins.

On slide 43 we see a trick to force the coefficients of quadratic terms to be closer to 0, driving it
back to a linear system. On slide 44 we see that � = 100 is best because validation set has lowest error.

10 An aside on speeding up the code (not in slides)
We want to speed up the code, but even though X is sparse, XT X is not sparse so we can’t use linear
algebra tricks. We want to find

C(w) = min
1
n

n�

i=1

1
2
(yi − wT φ(xi))2

One approach is gradient descent: start from some w0 and follow the gradient towards the minimum.
Thus we follow the recursion

wt+1 = wt +
γ

n

n�

i=1

(yi − wT φ(xi))φ(xi)

where the second part is the derivative of the objective function. Even though φ(x) is sparse, this
is still going to be costly because of the big sum (28,000 examples in the UCI case). So now we do
something drastic: at each iteration we pick just one example at random

5

wt+1 = wt + γt(yt − wT φ(xt))φ(xt)

This one term is a poor approximation of the average, but if we pick γt = γ0(1 + �t)−1 then things
improve because γ is decreasing with time. If you do this for many epochs then you can plot the
training and validation error, and then pick the minimum of the validation error. This is certainly not
the least squares solution, but it is a solution to the fitting problem and it works really fast. In one
case, this method sped up the analysis from 6 hours to a few seconds. Of course, this is only worth
doing if you have a large data set.

6

