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Introduction

Natural language processing “from scratch”

– Natural language processing systems are heavily engineered.

– How much engineering can we avoid by using more data ?

– Work by Ronan Collobert, Jason Weston, and the NEC team.

Summary

– Natural language processing

– Embeddings and models

– Lots of unlabeled data

– Task dependent hacks
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I. Natural language processing



The Goal

We want to have a conversation with our computer

. . . still a long way before HAL 9000 . . .

Convert a piece of English into a computer-friendly data structure

How to measure if the computer “understands” something?

4/43 COS 424 – 4/27/2010



Natural Language Processing Tasks

Intermediate steps to reach the goal?

Part-Of-Speech Tagging (POS): syntactic roles (noun, adverb...)

Chunking (CHUNK): syntactic constituents (noun phrase, verb phrase...)

Name Entity Recognition (NER): person/company/location...

Semantic Role Labeling (SRL): semantic role

[John]ARG0 [ate]REL [the apple]ARG1 [in the garden]ARGM−LOC
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NLP Benchmarks

Datasets:
? POS, CHUNK, SRL: WSJ (≈ up to 1M labeled words)
? NER: Reuters (≈ 200K labeled words)

System Accuracy
Shen, 2007 97.33%
Toutanova, 2003 97.24%
Gimenez, 2004 97.16%

(a) POS: As in (Toutanova, 2003)

System F1
Shen, 2005 95.23%
Sha, 2003 94.29%
Kudoh, 2001 93.91%

(b) CHUNK: CoNLL 2000

System F1
Ando, 2005 89.31%
Florian, 2003 88.76%
Kudoh, 2001 88.31%

(c) NER: CoNLL 2003

System F1
Koomen, 2005 77.92%
Pradhan, 2005 77.30%
Haghighi, 2005 77.04%

(d) SRL: CoNLL 2005

We chose as benchmark systems:
? Well-established systems
? Systems avoiding external labeled data

Notes:
? Ando, 2005 uses external unlabeled data
? Koomen, 2005 uses 4 parse trees not provided by the challenge
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Complex Systems

Two extreme choices to get a complex system

? Large Scale Engineering: design a lot of complex features, use a fast

existing linear machine learning algorithm
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Complex Systems

Two extreme choices to get a complex system

? Large Scale Engineering: design a lot of complex features, use a fast

existing linear machine learning algorithm

? Large Scale Machine Learning: use simple features, design a complex

model which will implicitly learn the right features
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NLP: Large Scale Engineering (1/2)

Choose some good hand-crafted features

Predicate and POS tag of predicate Voice: active or passive (hand-built rules)

Phrase type: adverbial phrase, prepositional phrase, . . . Governing category: Parent node’s phrase type(s)

Head word and POS tag of the head word Position: left or right of verb

Path: traversal from predicate to constituent Predicted named entity class

Word-sense disambiguation of the verb Verb clustering

Length of the target constituent (number of words) NEG feature: whether the verb chunk has a ”not”

Partial Path: lowest common ancestor in path Head word replacement in prepositional phrases

First and last words and POS in constituents Ordinal position from predicate + constituent type

Constituent tree distance Temporal cue words (hand-built rules)

Dynamic class context: previous node labels Constituent relative features: phrase type

Constituent relative features: head word Constituent relative features: head word POS

Constituent relative features: siblings Number of pirates existing in the world. . .

Feed them to a simple classifier like a SVM
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NLP: Large Scale Engineering (2/2)

Cascade features: e.g. extract POS, construct a parse tree

Extract hand-made features from the parse tree

Feed these features to a simple classifier like a SVM
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NLP: Large Scale Machine Learning

Goals

Task-specific engineering limits NLP scope

Can we find unified hidden representations?

Can we build unified NLP architecture?

Means

Start from scratch: forget (most of) NLP knowledge

Compare against classical NLP benchmarks

Avoid task-specific engineering
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II. Embeddings and models



Multilayer Networks

Stack several layers together

W xMatrix-vector
operation

Non-Linearity

xInput Vector

1
Linear layer

HardTanh

W Matrix-vector
operation 2

Linear layer

yOutput Vector

f(   )

Increasing level of abstraction at each layer

Requires simpler features than “shallow” classifiers

The “weights” Wi are trained by gradient descent

How can we feed words?
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Words into Vectors

Idea

Words are embedded in a vector space

R50

cat

jesus
sits

on

the

mat
car

smoke

Embeddings are trained

Implementation

A word w is an index in a dictionary D ∈ N

Use a lookup-table (W ∼ feature size × dictionary size)

LTW (w) = W•w
Remarks

Applicable to any discrete feature (words, caps, stems...)

See (Bengio et al, 2001)
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Window Approach

Input Window

Lookup Table

Linear

HardTanh

Linear

Text cat sat on the mat
Feature 1 w1

1 w1
2 . . . w1

N...
Feature K wK

1 wK
2 . . . wK

N

LTW 1

...
LTW K

M1 × ·

M2 × ·

word of interest

d

concat

n1
hu

n2
hu = #tags

Tags one word at the time

Feed a fixed-size window of text

around each word to tag

Works fine for most tasks

How do deal with long-range

dependencies?

E.g. in SRL, the verb of

interest might be outside

the window!
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Sentence Approach (1/2)

Feed the whole sentence to the network

Tag one word at the time: add extra position features

Convolutions to handle variable-length inputs

W × •

time

Produces local features with higher level of abstraction

Max over time to capture most relevant features

Max
Outputs a fixed-sized feature

vector
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Sentence Approach (2/2)

Input Sentence

Lookup Table

Convolution

Max Over Time

Linear

HardTanh

Linear

Text The cat sat on the mat
Feature 1 w1

1 w1
2 . . . w1

N...
Feature K wK

1 wK
2 . . . wK

N

LTW 1

...
LTW K

max(·)

M2 × ·

M3 × ·

d

P
adding

P
adding

n1
hu

M1 × ·

n1
hu

n2
hu

n3
hu = #tags
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Training

Given a training set T
Convert network outputs into probabilities

Maximize a log-likelihood

θ 7−→
∑

(x, y)∈T
log p(y |x, θ)

Use stochastic gradient (See Bottou, 1991)

θ ←− θ + λ
∂ log p(y |x, θ)

∂θ

Fixed learning rate. “Tricks”:

? Divide learning by “fan-in”
? Initialization according to “fan-in”

Use chain rule (“back-propagation”) for efficient gradient computation

Network f (·) has L layers

f = fL ◦ · · · ◦ f1

Parameters

θ = (θL, . . . , θ1)

∂ log p(y |x, θ)

∂θi
=
∂ log p(y |x, θ)

∂fi
· ∂fi
∂θi

∂ log p(y |x, θ)

∂fi−1
=
∂ log p(y |x, θ)

∂fi
· ∂fi
∂fi−1

How to interpret neural networks outputs as probabilities?
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Word Tag Likelihood (WTL)

The network has one output f (x, i, θ) per tag i

Interpreted as a probability with a softmax over all tags

p(i |x,θ) =
ef (x, i,θ)∑
j e
f (x, j,θ)

Define the logadd operation

logadd
i

zi = log(
∑
i

ezi)

Log-likelihood for example (x, y)

log p(y |x, θ) = f (x, y, θ)− logadd
j

f (x, j, θ)

How to leverage the sentence structure?
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Sentence Tag Likelihood (STL) (1/2)

The network score for tag k at the tth word is f (x1...xT , k, t, θ)

Akl transition score to jump from tag k to tag l

The
Arg0

Arg1

Arg2

Verb

cat sat on the mat

Aij

f(x , k, t)1
T

k ∈

Sentence score for a tag path i1...iT

s(x1...xT , i1...iT , θ̃) =

T∑
t=1

(
Ait−1it + f (x1...xT , it, t, θ)

)
Conditional likelihood by normalizing w.r.t all possible paths:

log p(y1...yT |x1...xT , θ̃) = s(x1...xT , y1...yT , θ̃)− logadd
j1...jT

s(x1...xT , j1...jT , θ̃)

How to efficiently compute the normalization?
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Sentence Tag Likelihood (STL) (2/2)

Normalization computed with recursive forward algorithm:

Aij

f(x , j, t)1
T

δ(i)
t-1

δt(j) = logadd
i

[
δt−1(i) + Ai,j + fθ(j,x1...xT , t)

]
Termination:

logadd
j1...jT

s(x1...xT , j1...jT , θ̃) = logadd
i

δT (i)

Simply backpropagate through this recursion with chain rule

Non-linear CRFs: Graph Transformer Networks

Compared to CRFs, we train features

(network parameters θ and transitions scores Akl)

Inference: Viterbi algorithm

(replace logadd by max)
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Supervised Benchmark Results

Network architectures:

? Window (5) approach for POS, CHUNK & NER (300HU)

? Convolutional (3) for SRL (300+500HU)

? Word Tag Likelihood (WTL) and Sentence Tag Likelihood (STL)

Network features: lower case words (size 50), capital letters (size 5)

dictionary size 100,000 words

Approach POS Chunking NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92

NN+WTL 96.31 89.13 79.53 55.40
NN+STL 96.37 90.33 81.47 70.99

STL helps, but... fair performance.

Capacity mainly in words features... are we training it right?
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Supervised Word Embeddings

Sentences with similar words should be tagged in the same way:

? The cat sat on the mat
? The feline sat on the mat

france jesus xbox reddish scratched megabits
454 1973 6909 11724 29869 87025

persuade thickets decadent widescreen odd ppa
faw savary divo antica anchieta uddin

blackstock sympathetic verus shabby emigration biologically
giorgi jfk oxide awe marking kayak

shaheed khwarazm urbina thud heuer mclarens
rumelia stationery epos occupant sambhaji gladwin
planum ilias eglinton revised worshippers centrally
goa’uld gsNUMBER edging leavened ritsuko indonesia

collation operator frg pandionidae lifeless moneo
bacha w.j. namsos shirt mahan nilgiris

About 1M of words in WSJ

15% of most frequent words in the dictionary are seen 90% of the time

Cannot expect words to be trained properly!
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III. Lots of unlabeled data



Ranking Language Model

Language Model: “is a sentence actually english or not?”
Implicitly captures: syntax and semantics.

Estimating the probability of next word given previous words:
Overkill because we do not need probabilities here

Likelihood criterion largely determined by the most frequent phrases

Rare legal phrases are no less significant that common phrases

f () a window approach network

Ranking margin cost:∑
s∈S

∑
w∈D

max (0, 1− f (s, w?s) + f (s, w))

S: sentence windows D: dictionary
w?s: true middle word in s

f (s, w): network score for sentence s and middle word w

Stochastic training:

? positive example: random corpus sentence
? negative example: replace middle word by random word
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Training Language Model

Two window approach (11) networks (100HU) trained on two corpus:

? LM1: Wikipedia: 631M of words

? LM2: Wikipedia+Reuters RCV1: 631M+221M=852M of words

Massive dataset: cannot afford classical training-validation scheme

Like in biology: breed a couple of network lines

Breeding decisions according to 1M words validation set

LM1

? order dictionary words by frequency

? increase dictionary size: 5000, 10, 000, 30, 000, 50, 000, 100, 000

? 4 weeks of training

LM2

? initialized with LM1, dictionary size is 130, 000

? 30,000 additional most frequent Reuters words

? 3 additional weeks of training
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Unsupervised Word Embeddings

france jesus xbox reddish scratched megabits
454 1973 6909 11724 29869 87025

austria god amiga greenish nailed octets
belgium sati playstation bluish smashed mb/s
germany christ msx pinkish punched bit/s

italy satan ipod purplish popped baud
greece kali sega brownish crimped carats
sweden indra psNUMBER greyish scraped kbit/s
norway vishnu hd grayish screwed megahertz
europe ananda dreamcast whitish sectioned megapixels

hungary parvati geforce silvery slashed gbit/s
switzerland grace capcom yellowish ripped amperes
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Semi-Supervised Benchmark Results

Initialize word embeddings with LM1 or LM2

Same training procedure

Approach POS CHUNK NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92

NN+WTL 96.31 89.13 79.53 55.40
NN+STL 96.37 90.33 81.47 70.99
NN+WTL+LM1 97.05 91.91 85.68 58.18
NN+STL+LM1 97.10 93.65 87.58 73.84
NN+WTL+LM2 97.14 92.04 86.96 –
NN+STL+LM2 97.20 93.63 88.67 74.05

Huge boost from language models

Training set word coverage:
LM1 LM2

POS 97.86% 98.83%
CHK 97.93% 98.91%
NER 95.50% 98.95%
SRL 97.98% 98.87%
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IV. Multi-task learning



Multi-Task Learning

Joint training

Good overview in (Caruana, 1997)

Lookup Table

Linear

Lookup Table

Linear

HardTanh HardTanh

Linear

Task 1

Linear

Task 2

M2
(t1) × · M2

(t2) × ·

LTW 1

...
LTW K

M1 × ·
n1

hu n1
hu

n2
hu,(t1) = #tags n2

hu,(t2) = #tags
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Multi-Task Learning Benchmark Results

Approach POS CHUNK NER
(PWA) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31

NN+STC+LM2 97.20 93.63 88.67
NN+STC+LM2+MTL 97.22 94.10 88.62
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V. Task dependent hacks



Cascading Tasks

Increase level of engineering by incorporating common NLP techniques

Stemming for western languages benefits POS (Ratnaparkhi, 1996)

? Use last two characters as feature (455 different stems)

Gazetteers are often used for NER (Florian, 2003)

? 8, 000 locations, person names, organizations and misc entries

from CoNLL 2003

POS is a good feature for CHUNK & NER (Shen, 2005) (Florian, 2003)

? We feed our own POS tags as feature

CHUNK is also a common feature for SRL (Koomen, 2005)

? We feed our own CHUNK tags as feature

35/43 COS 424 – 4/27/2010



Cascading Tasks Benchmark Results

Approach POS CHUNK NER SRL
(PWA) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92

NN+STC+LM2 97.20 93.63 88.67 74.05
NN+STC+LM2+Suffix2 97.29 – – –
NN+STC+LM2+Gazetteer – – 89.59 –
NN+STC+LM2+POS – 94.32 88.67 –
NN+STC+LM2+CHUNK – – – 74.68
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Variance

Train 10 networks

Approach POS CHUNK NER
(PWA) (F1) (F1)

Benchmark Systems 97.24% 94.29% 89.31%

NN+STC+LM2+POS worst 97.29% 93.99% 89.35%
NN+STC+LM2+POS mean 97.31% 94.17% 89.65%
NN+STC+LM2+POS best 97.35% 94.32% 89.86%

Previous experiments:

same seed was used for all networks to reduce variance
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Parsing

Parsing is essential to SRL (Punyakanok, 2005) (Pradhan, 2005)

State-of-the-art SRL systems use several parse trees (up to 6!!)

We feed our network several levels of the Charniak parse tree
provided by CoNLL 2005

level 0

S

NP

The luxury auto maker
b-np i-np i-np e-np

NP

last year
b-np e-np

VP

sold
s-vp

NP

1,214 cars
b-np e-np

PP

in
s-vp

NP

the U.S.
b-np e-np

level 1

S

The luxury auto maker last year
o o o o o o

VP

sold 1,214 cars
b-vp i-vp e-vp

PP

in the U.S.
b-pp i-pp e-pp

level 2

S

The luxury auto maker last year
o o o o o o

VP

sold 1,214 cars in the U.S.
b-vp i-vp i-vp i-vp i-vp e-vp
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SRL Benchmark Results With Parsing

Approach SRL
(test set F1)

Benchmark System (six parse trees) 77.92

Benchmark System (top Charniak only) 74.76†
NN+STC+LM2 74.05
NN+STC+LM2+CHUNK 74.68
NN+STC+LM2+Charniak (level 0 only) 75.45
NN+STC+LM2+Charniak (levels 0 & 1) 75.86
NN+STC+LM2+Charniak (levels 0 to 2) 75.79
NN+STC+LM2+Charniak (levels 0 to 3) 75.90
NN+STC+LM2+Charniak (levels 0 to 4) 75.66

†
on the validation set
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Engineering a Sweet Spot

SENNA: implements our networks in simple C (≈ 2500 lines)

Neural networks mainly perform matrix-vector multiplications: use BLAS

All networks are fed with lower case words (130,000) and caps features

POS uses prefixes

CHUNK uses POS tags

NER uses gazetteer

SRL uses level 0 of parse tree

? We trained a network to predict level 0 (uses POS tags):

92.25% F1 score against 91.94% for Charniak

? We trained a network to predict verbs as in SRL

? Optionaly, we can use POS verbs
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SENNA Speed

System RAM (Mb) Time (s)
Toutanova, 2003 1100 1065

Shen, 2007 2200 833
SENNA 32 4

(a) POS

System RAM (Mb) Time (s)
Koomen, 2005 3400 6253

SENNA 124 52
(b) SRL
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SENNA Demo

Will be available in January at

http://ml.nec-labs.com/software/senna

If interested: email ronan@collobert.com
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Conclusion

Results
“All purpose” neural network architecture for NLP

Limit task-specific engineering

Rely on very large unlabeled datasets

Still room for improvements

Criticism
Why forgetting NLP expertise for neural network training skills?
? NLP goals are not limited to existing NLP task

? Excessive task-specific engineering is not desirable

Why neural networks?
? Scale on massive datasets

? Discover hidden representations

? Most of neural network technology existed in 1997

If we had started in 1997 with vintage computers,
training would be near completion today!!
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