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I. The importance of features
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Simple linear models

People like simple linear models with convex loss functions

– Training has a unique solution.

– Easy to analyze and easy to debug.

Which basis functions Φ?

– Also called the features.

Many basis functions

– Poor testing performance.

Few basis functions

– Poor training performance, in general.

– Good training performance if we pick the right ones.

– The testing performance is then good as well.
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Explainable models

Modelling for prediction

– Sometimes one builds a model for its predictions.

– The model is the operational system.

– Better prediction =⇒ $$$.

Modelling for explanations

– Sometimes one builds a model for interpreting its structure.

– The human acquires knowledge from the model.

– The human then design the operational system.

(we need humans because our modelling technology is insufficient.)

Selecting the important features

– More compact models are usually easier to interpret.

– A model optimized for explanability is not optimized for accuracy.

– Identification problem vs. emulation problem.

Léon Bottou 5/29 COS 424 – 4/22/2010



Feature explosion

Initial features

– The initial pick of feature is always an expression of prior knowledge.

images −→ pixels, contours, textures, etc.
signal −→ samples, spectrograms, etc.

time series −→ ticks, trends, reversals, etc.
biological data −→ dna, marker sequences, genes, etc.

text data −→ words, grammatical classes and relations, etc.

Combining features

– Combinations that linear system cannot represent:

polynomial combinations, logical conjunctions, decision trees.

– Total number of features then grows very quickly.

Solutions
– Kernels (with caveats, see later)
– Feature selection (but why should it work at all?)
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II. Relevant features

Assume we know distribution p (X, Y ).

Y : output
X : input, all features
Xi : one feature

Ri = X \Xi : all features but Xi,
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Probabilistic feature relevance

Strongly relevant feature

– Definition: Xi ⊥6⊥ Y |Ri
Feature Xi brings information that no other feature contains.

Weakly relevant feature

– Definition: Xi ⊥6⊥ Y | S for some strict subset S of Ri.

Feature Xi brings information that also exists in other features.

Feature Xi brings information in conjunction with other features.

Irrelevant feature

– Definition: neither strongly relevant nor weakly relevant.

Stronger than Xi ⊥⊥ Y . See the XOR example.

Relevant feature

– Definition: not irrelevant.
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Interesting example
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Two variables can be useless by themselves but informative together.
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Interesting example
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Correlated variables may be useless by themselves.
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Interesting example
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Strongly relevant variables may be useless for classification.
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Bad news

Forward selection

– Start with empty set of features S0 = ∅.
– Incrementally add features Xt such that Xt ⊥6⊥ Y | St−1.

Will find all strongly relevant features.

May not find some weakly relevant features (e.g. xor).

Backward selection

– Start with full set of features S0 = X.

– Incrementally remove features Xi such that Xt ⊥⊥ Y | St−1 \Xt.
Will keep all strongly relevant features.

May eliminate some weakly relevant features (e.g. redundant).

Finding all relevant features is NP-hard.

– Possible to construct a distribution that demands

an exhaustive search through all the subsets of features.
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III. Selecting features

How to select relevant features

when p(x, y) is unknown

but data is available?
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Selecting features from data

Training data is limited

– Restricting the number of features is a capactity control mechanism.

– We may want to use only a subset of the relevant features.

Notable approaches

– Feature selection using regularization.

– Feature selection using wrappers.

– Feature selection using greedy algorithms.
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L0L0L0 structural risk minimization

��������������	
��������

��������	���
	��
��

��

��

��
��

Algorithm

1. For r = 1 . . . d, find system fr ∈ Sr that minimize training error.

2. Evaluate fr on a validation set.

3. Pick f? = arg minrEvalid(fr)

Note

– The NP-hardness remains hidden in step (1).

Léon Bottou 15/29 COS 424 – 4/22/2010



L0L0L0 structural risk minimization
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Let Er = min
f∈Sr

Etest(f ). The following result holds (Ng 1998):

Etest(f
?) ≤ min

r=1...d

Er + Õ

√ hr
ntrain

 + Õ

√r log d

ntrain

 +O

(√
log d

nvalid

)

Assume Er is quite good for a low number of features r.
Meaning that few features are relevant.

Then we can still find a good classifier if hr and log d are reasonable.
We can filter an exponential number of irrelevant features.
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L0L0L0 regularisation

min
w

1

n

n∑
i=1

`(y, fw(x)) + λ count{wj 6= 0}

This would be the same as L0-SRM.

But how can we optimize that?
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L1L1L1 regularisation

The L1 norm is the first convex Lp norm.

min
w

1

n

n∑
i=1

`(y, fw(x)) + λ|w|1

Same logarithmic property

(Tsybakov 2006).

L1 regulatization can weed an

exponential number of irrelevant

features.

See also “compressed sensing”.
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L2L2L2 regularisation

The L2 norm is the same as the maximum margin idea.

min
w

1

n

n∑
i=1

`(y, fw(x)) + λ‖w‖2

Logarithmic property is lost.

Rotationally invariant regularizer!

SVMs do not have magic properties

for filtering out irrelevant features.

They perform best when dealing

with lots of relevant features.
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L1/2L1/2L1/2 regularization ?

min
w

1

n

n∑
i=1

`(y, fw(x)) + λ‖w‖1
2

This is non convex.

Therefore hard to optimize.

Initialize with L1 norm solution

then perform gradient steps.
This is surely not optimal,
but gives sparser solutions
than L1 regularization !

Works better than L1 in practice.

But this is a secret!
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Wrapper approaches

Wrappers

– Assume we have chosen a learning system and algorithm.

– Navigate feature subsets by adding/removing features.

– Evaluate on the validation set.

Backward selection wrapper

– Start with all features.

– Try removing each feature and measure validation set impact.

– Remove the feature that causes the least harm.

– Repeat.

Notes

– There are many variants (forward, backtracking, etc.)

– Risk of overfitting the validation set.

– Computationally expensive.

– Quite effective in practice.

Léon Bottou 21/29 COS 424 – 4/22/2010



Greedy methods

Algorithms that incorporate features one by one.

Decision trees

– Each decision can be seen as a feature.

– Pruning the decision tree prunes the features

Ensembles

– Ensembles of classifiers involving few features.

– Random forests.

– Boosting.
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Greedy method example

The Viola-Jones face recognizer

Lots of very simple features.∑
R∈Rects

αr
∑

(i,j)∈R
x[i, j]

Quickly evaluated by first precomputing

Xi0 j0 =
∑
i≤i0

∑
j≤j0

x[i, j]

Run AdaBoost with weak classifiers bases on these features.

Léon Bottou 23/29 COS 424 – 4/22/2010



IV. Feature learning
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Feature learning in one slide

Suppose we have weight on a feature X.

Suppose we prefer a closely related feature X + ε.
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Feature learning and multilayer models
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Feature learning for image analysis

2D Convolutional Neural Networks

– 1989: isolated handwritten digit recognition

– 1991: face recognition, sonar image analysis

– 1993: vehicle recognition

– 1994: zip code recognition

– 1996: check reading

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10
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Feature learning for face recognition

Note: more powerful but slower than Viola-Jones
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Feature learning revisited

Handcrafted features

– Result from knowledge acquired by the feature designer.

– This knowledge was acquired on multiple datasets

associated with related tasks.

Multilayer features

– Trained on a single dataset (e.g. CNNs).

– Requires lots of training data.

– Interesting training data is expensive

Multitask/multilayer features

– In the vicinity of an interesting task with costly labels

there are related tasks with abundant labels.

– Example: face recognition ↔ face comparison.

– More during the next lecture!
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