
DRAFT — a final version will be posted shortly

COS 424: Interacting with Data

Lecturer: Léon Bottou Lecture of April 20, 2010
Scribe: Yibiao Chai

1 A Brief Review of Classifiers

We will examine in this section two broad classes of methods for solving classification prob-
lems in machine learning: generative and discriminative learning. Both of them are aimed to
learn, or approximate, f : X → Y, or p(y|x) where x ∈ X (pattern set) and y ∈ Y (class set).

Generative Classifiers
In this class of classifiers, we model p(x, y). We estimate p(x|y) and p(y) before using
Bayes rule to back out p(y|x). Parameters are typically estimated using a likelihood-based
criterion on training data. To put it mathematically (See Scribe 4 for more details), we
have

p(x, y) = p(y) · p(x|y)

and
p(y|x) =

p(x, y)∑
i p(x, yi)

The optimal class is given by
ŷ(x) = arg max

x
p(y|x)

Discriminative Classifiers
In this class of classifiers, we directly model p(y|x), the mapping from patterns to out-
put classes (either as a conditional distribution or simply as a prediction function), or a
parametric model, is often assumed. Mathematically we get

p(x, y) = p(x) · p(y|x)

The optimal class is given by
ŷ(x) = arg max

x
p(y|x)

Optimization of the expectation of a loss function
We talked about optimization of loss functions in previous lectures. Indeed, we often derive
an optimal class by optimize the expectation of loss functions (or surrogate loss functions).
Typical functions of these are sigmoid, hinge, quadratic, log loss functions etc. For a lot of
these functions, if we could really optimize them, asymptotically we can get discriminant
functions that are sufficient for our purposes. Moreover, most of the time, we don’t even
need to precisely estimate p(y|x), we just need to know one certain p(y|xi) is greater than
all others to get the optimal class.

Another way of looking at the learning problem is as follows. Let’s first look at the
generative setup. Given the parametric likelihood pθ(x, y), the parameters are obtained by
solving

max
1
n

n∑
i=1

log pθ(xi, yi)

The function to be maximized can be rewritten as

1
n

∑
i

log pθ(yi|xi)︸ ︷︷ ︸
“discriminative” term

+
1
n

∑
i

log pθ(xi) (1)

after defining
pθ(x) =

∑
i

pθ(x, yi)

pθ(y|x) =
pθ(x, y)
pθ(x)

In sum, we take a generative model for a parametric system, split the log-likelihood into
two parts: the likelihood for a discriminative model plus another term. If we look at this
closely, it looks very much like the SVM models where we solve the following problem

optimize
1
n

∑
i

(L(xi, yi, θ) + λ · Ω(θ)) (2)

where L is some loss term and Ω some regularization function of parameters.

A few comments are in order:

• In order to solve (2) we split the parameter solutions into sets of levels in the Θ-space
(see Figure 1) and since the function to be optimized is convex in the case with SVM,
gradient desccent method would suffice and is often efficient too.

• It is also easy to see that the more restrictive Ω(θ) is, the smaller the dimension of
parameters the model prefers. With λ fixed, as the number of samples increases, the
training error reaches a stable level while the testing error eventually increases. It is
therefore not surprising that we get the kind of curves as illustrated in Figure 2.

• The idea is that the more training data we have, the more the restrictive term comes
into play, and as a result, the harder for us to find the optimal set of parameters.

Figure 1: Parameter solutions in Θ-space
and gradient descent

number of training samples

training error

testing error

error

Figure 2: SVM testing and training error as
a function of the number of training samples

2

Now back to our parametric model expressed in (1). We find similarities between (1)
and (2) in that the “discriminative” term in (1) looks like the loss term in (2) and that
the regularization term in (2) resembles the sum of log pθ(xi)’s in (1). Therefore, we can
view a generative model as the sum of a discriminative model and an additional term.
This observation helps us reach some of the following remarks regarding the performance
difference in the two classes of classifiers (for the others, please refer to Ng & Jordan 2002):

• The asymptotic (as the number of training examples approach infinity) classification
accuracy for discriminative model is often better than the asymptotic accuracy of
generative model.

• Generative model parameter estimates converge toward their asymptotic values faster
than their discriminative counterparts.

• Generative model performs better (in terms of error) when training dataset is small
while discriminative model performs better when training dataset is large.

Figure 3 illustrates the above comments.

number of training samples

discriminative models

generative models

combined
error

Figure 3: Performance: generative models vs. discriminative models. This figure is inline
with the remarks regarding the performance of the two types of classifiers.

2 Graph Transformer Networks

Let’s see some models at work.

Slide 2: (Example: Check reader) On a check, some pieces of information are well
defined: the bank, the check maker, the payee, the date, the amount, the signature, etc.
However, the relative positions of these are never fixed; no standard layout exists. In the
mid-1990s, people started to scan checks and store the images for future references. This
turned out to be expensive, bulky and inefficient at the time. People wanted to process these

3

images to extract textual/numeric information. Difficulties abound: handwritten numbers,
cursively written names, lack of natural stops between digits, etc.

Slide 3: A traditional approach is given on this slide. From the field locator to linguis-
tic/contextual postprocessor, all the subroutines are built by hand and manually adjusted.

Slide 4: What we really want, however, is to train all the parameters in the system to
optimize the global performance.

Slide 7: One idea is to pile the different parts of the system together to form a multiple
layer network. Different parts of the system are represented by boxes on the slide. Each
box has a relatively small and simple system inside. The state variables here are fixed size
vectors, which cannot represent sequential information as with the case of speech recogni-
tion, structured images, etc.

Slide 8-9: One way to remedy this is to turn to graph transformer network. The state
variables are weighted graphs with numerical information attached to the arcs. A path in
the graph represents a sequence of decisions. Depending on these decisions, the graph will
be transformed accordingly to form a new graph.

Slide 10: (Example: Word reader) This slide illustrates a concrete example. Notice
that the arcs in the graph after the segmentor represent the possible segments. After the
character scorer, the arcs are used to represent possible character candidates (with the
penalty score in the brackets). Viterbi algorithm is used to select the best segmentation in
this example.

Slide 11: Let’s go back to the two classes of classifiers a bit. We now know that they
all maximize the same thing but the difference lies in the way in which the system is nor-
malized. To some extent, switching from a generative model to a discriminative one is to
change the way the normalization in the system.

yy y y

x x x x

transition
probability

emission
probability

An HMM Setup

Figure 4: An HMM setup

y y y y

x x x x

transition
probability

A DHMM Setup

Figure 5: A DHMM setup

Slide 12: Let’s look at hidden markov model used in both classes of classifiers. Fig-
ures 4 and 5 illustrates both HMM setup (generative model) and DHMM (discriminative

4

a

a

a

da

mant

la r
mant

bi li ty

s d

B

R

Figure 6: Recognize letters: a possible setup. Self loops are ignored for clarity.

model). The probabilistic construction in a HMM ensures normalization. In a DHMM,
however, output of the local classifier would need to be normalized. But it turned out to
be a bad idea.

To illustrate why it is so, suppose we would like to recognize letters. The setup is given
in Figure 6. For this simple and purely discriminative HMM model, we have

P (St+ = B,St = B|St− = s)
= P (St = B|St− = s) · (1− P (St+ = d|St = B,St− = s)) (3)

where {St} represents the state of the lexicon at time t, t− is the step before t and t+
the step after t. Notice that P (St = B|St−) is also the probability of getting “a” after
startup (in the top path) in this simple setup while P (St+ = d|St = B,St− = s) is also the
probability of getting “mant” after “ada”. Therefore, Eq.(3) can be rewritten as follows

P (St+ = B,St = B|St− = s)
= P (getting “a” after startup) · (1− P (getting “mant” after current step))

However, we get exactly the same expression for P (St+ = R,St = R|St− = s) and since
the system is normalized in a way that P (getting “a” after startup) in every path is the
same and that P (getting “mant” after current step) is also the same, it makes it impossible
to distinguish Box B from Box R. This makes the system lose certain information that we
might be interested in. In sum, the big take-away is then: normalization operation at very
level destroys useful information.

Slide 13: Now let’s look at denormalized models. We use penalties instead of prob-
abilities. The score e−penalty works just like probabilities when it comes to additions and
multiplications.

5

Slide 14: This slide gives an example of a denormalized model at work. The penalty is
still given in brackets while the number in parentheses represents the gradient associated.
We run the system from bottom up and then move top-down to incorporate gradient infor-
mation to (re)train the system.

Slide 15: (Example: Check reader continued) Two types of checks exist: personal
checks and business checks. While the latter is usually machine printed, the former is often
handwritten. Both of them present difficult problems when we try to read them by machine.

Slide 16: A possible recognition architecture is given on the slide. This time we use the
graph transformer approach. The system starts with a simple graph with only two nodes
and the arc representing the a suitable image of check and ends with the Viterbi algorithm
looking for the amount written (the best interpretation) on the check.

Slide 17: The gradient-based discriminant training architecture is shown here. Again,
we use gradient back-propagation to train the system.

Slide 18: In sum, graph transformer networks work in general. For example, the check
reader is now widely in use. Some performance results in the literature are listed on this
slide.

Slide 19-23: Now let’s look at the these graph transformer systems. They transform
one graph into another sequentially according to some predefined rules. As an example, a
lexicon would need to build a subgraph consistent with the grammar.

There are two types of transformers, composition transformers and pruning graph trans-
formers. In the former, we repeat two important operations: match and build (see the
example of the lexicon on Slide 20). The codes are easy to write and are reusable. Pruning
graph transformers, on the other hand, remove selected arcs from a graph. The Viterbi
algorithm is a good example.

The back-propagation training method we introduced earlier can be readily applied to
both systems.

Slide 26: (Example: Character spotting) Sometimes we don’t need to segment, we can
use a single object recognizer and slide it through the input. But this is of course very costly.

Slide 28-30: (Example: SDNN handwriting recognizer) Please refer to slides. Several
additional comments: This result of convolutional neural networks are invariant to shifts,
noise and extraneous marks on the input and it is efficient as compared to the character
spotting example above.

In conclusion, the graph transformer networks are a success overall, both in theorectical
understanding and in practical use. The only bemol might be that it is less of a success in
terms of dissemination of knowledge due to the fact the writing papers on the very subject,
concerning often large and complex systems demanding years of development, is simply not
an easy task.

6

