
DRAFT — a final version will be posted shortly

COS 424: Interacting with Data

Lecturer: Léon Bottou Lecture # 15 - Hidden Markov Models
Scribes: Joshua Kroll and Gordon Stewart 13 April 2010

Introduction

The classifiers we’ve looked at up to this point ignore the sequential aspects of data. For
example, in homework 2 we used the bag-of-words model to classify Reuters articles. How-
ever, a lot of data is sequential. Hidden Markov models (HMMs) allow us to model this
sequentiality.

History of HMMs

HMMs were first described in the 1960s and 70s by a group of researchers at the Institute
for Defense Analyses (Baum, Petrie, Soules, Weiss). Rabiner popularized HMM methods in
the 1980s, especially through their applications in speech recognition. Ferguson, at the IDA,
was the first to give an account of HMMs in terms of the 3 related problems of likelihood,
decoding and learning.

HMMs and Speech Recognition

The first major application of HMMs was in speech recognition. There are two major
problems in this domain: data segmentation and recognition. Speech data is represented as
a waveform where the frequency and amplitude of the sound vary with time. Segmentation
involves splitting a waveform into smaller pieces that correspond to individual phonemes.
Recognition is the task of determining which waveform subsequences correspond to which
phonemes. Segmentation and recognition are the two major tasks of HMMs in other domains
as well.

Slides 10-11. Speech recognition is complicated by coarticulation. Coarticulation occurs
when two phonemes are voiced simultaneously in the transition from one phoneme to an-
other due to the physical nature of the human vocal system. This phenomenon especially
complicates speech segmentation.

Hidden Markov Models

HMMs are well described in a paper by Lawrence Rabiner [1].
Hidden Markov Models are generative models, unlike the discriminative models we’ve

seen up to this point. Discriminative models use observed data x to model unobserved
variables y, by modeling the conditional probability distribution P (y|x) and then using this
to predict y from x. In a generative model, we randomly generate observable data using
hidden parameters. Because a generative model has full probability distributions for all
of the variables, it can be used to simulate the value of any variable in the model. For
example, in the speech recognition example above, we are asking “what is the probability
of the result given the state of the world?”

Markov models are based on a Markov state machine, which is a probabilisitic state
machine that obeys the Markov assumption: the transition probabilities at time t in state

st only depend on st−1. Additionally, we require that the model is time-invariant, in the
sense that the transition probabilities

Pθ(st|st−1) , ast,st−1

do not depend on the time parameter t (that is, the transition probabilities from state to
state are fixed and depend only on the prior state, without regard to time or the path taken
through the model).

Further, at each time/state st, there is a probability to emit a symbol xt. This proba-
bility only depends on st and st−1, and is independent of time as before. In the case of a
continuous HMM, we say that Pθ(xt|st = s) is distributed according to some distribution
N (µs,Σs) which depends only on the state (and possibly the prior state). In a discrete
HMM, we have an alphabet of emission symbols Xc for each cluster c in the data and we
write Pθ(xt ∈ Xc|st = s) , bcs.

The Ferguson Problems

Rabiner explains that HMMs can be used effectively if we can solve three problems:

1. Likelihood Given a specific HMM, what is the likelihood of an observation sequence?
That is, can we efficiently calculate

Pθ(x1 . . . xT) =
∑
s1...sT

P (x1 . . . xT , s1 . . . sT)

where sT is a possible end state. Note that on the right we have just marginalized
the probability of observing a sequence over the set of allowable sequences (i.e. valid
transitions which end in a valid end state).

2. Decoding Given a sequence of observations and an HMM, what is the most probable
sequence of hidden states? That is, calculate

arg max
s1...sT

Pθ(s1 . . . sT |x1 . . . xT) = arg max
s1...sT

Pθ(s1 . . . st, x1 . . . xT)

Note that the argmax on the right is the same as on the left because the values
themselves only differ by an exogenous factor 1/P (x1 . . . xT)

3. Learning Given an observation sequence, learn the parameters and probability dis-
tributions which maximize performance. If we knew s1 . . . sT this would be easy; we
could just compute

max
θ

∑
s1...sT

Pθ(s1 . . . sT)Pθ(x1 . . . xT |s1 . . . sT)

since by Bayes’ theorem this effectively maximizes the probability of getting the right
answer for a given observation:

Pθ(s1 . . . sT |x1 . . . xT)Pθ(x1 . . . xT)

The idea of using these three problems to organize thinking about HMMs is due to Jack
Ferguson of IDA, again according to Rabiner [1]. Thus, we call them the Ferguson problems.
We will solve each of these problems below.

2

Likelihood

We’d like to compute:

L(θ) , Pθ(x1 . . . xT) =
∑
s1...sT

P (x1 . . . xT , s1 . . . sT)

However, we can rewrite this as:

L(θ) =
∑
s1...sT

T∏
t=1

ast−1stPθ(xt|st)

The number of terms in this sum is exponential in T (as before, we mean the sum to run
only over sequences of states which have sT as a valid end state). This is too costly to
compute directly. However, we can rewrite it by factoring into something we can compute
efficiently.

∀1 ≤ t ≤ T, L(θ) , Pθ(x1 . . . xT) =
∑
i

Pθ(x1 . . . xT , st = i)

=
∑
i

Pθ(x1 . . . xt, st = i)Pθ(xt+1 . . . xT |x1 . . . xt, st = i)

=
∑
i

Pθ(x1 . . . xt, st = 1)︸ ︷︷ ︸
,αt(i)

Pθ(xt+1 . . . xT |st = i)︸ ︷︷ ︸
,βt(i)

In the first step we are just marginalizing over states. In the second, we break up the
probability into the joint probability over the observation up to time t, x1 . . . xt and the
state st at time t and the conditional probability of the observation after time t (until the
end time T) on the observation up to time t and the state st at time t. Finally, in the third
step, we use the Markov assumption to note that the probability of observations after time
t only depend on the state st at time t.

Now, we can get a recursive definition for αt(st). This will yield an algorithm for
calculating the αt(st):

αt(st) = Pθ(x1 . . . xt, st)

=
∑
st−1

Pθ(x1 . . . xt, st, st−1)

=
∑
st−1

Pθ(x1 . . . xt−1, st−1)Pθ(st|x1 . . . xt−1, st−1)Pθ(xt|x1 . . . xt−1, st−1, st)

=
∑
st−1

αt−1(st−1)ast−1stPθ(xt|st)

Similarly we can get a recursive definition for βt(st), but the recursion is flipped:

βt−1(st−1) = Pθ(xt . . . xT |st−1)

=
∑
st

Pθ(xt . . . xT |st−1, st)Pθ(st|st−1)

=
∑
st

Pθ(xt+1 . . . xT |st−1, st)Pθ(xt|xt+1 . . . xT , st−1, st)Pθ(st|st−1)

=
∑
st

βt(st)ast−1stPθ(xt|st)

3

We could have gotten the same result by an equivalent derivation that only relies on the
distributive law:

L(θ) , Pθ(x1 . . . xT) =
∑
s1...sT

T∏
t=1

ast−1stPθ(xt|st)

=
∑
st




∑

s1...st−1

t∏
t′=1

ast′−1st′Pθ(xt′ |st′)︸ ︷︷ ︸
,αt(st)

×


∑
st+1...sT

T∏
t′=t+1

ast′−1st′Pθ(xt′ |st′)︸ ︷︷ ︸
,βt(st)




Now, we can get a recursive definition by:

αt(st) =
∑

s1...st−1

t∏
t′=1

ast′−1st′Pθ(xt′ |st′)

=
∑
st−1

Pθ(xt|st)ast−1st

∑
s1...st−2

t−1∏
t′=1

ast′−1st′Pθ(xt′ |st′)

=
∑
st−1

αt−1(st−1)ast−1stPθ(xt|st)

We can similarly get a recursive definition for the βt(st) in this way.
It’s worthwhile noting that we can also get a derivation via the chain rule:

∂L

∂αt−1
= βt−1 =

(
∂L

∂αt

)>(∂αt
∂αt−1

)
= β>t

∂αt
∂αt−1

All this yields a simple algorithm that progresses forward through the model. We
initialize α0(i) = 1{i = Start} and then set:

αt(i) =
∑
j

αt−1(j)ajiPθ(xt|st = i)

Once we have these, we can initialize the β values by βT (i) = 1{i ∈ End} and then we
know from our initial derivation that the likelihood is just:

Pθ(x1 . . . xT) =
∑
i

αT (i)βT (i) =
∑
i∈End

αT (i)

Decoding

We’d like to compute the most likely set of hidden states. Noting that max(ab, ac) =
amax(b, c) for a, b, c ≥ 0, we can write:

αt(i) ,
∑

s1...st−1

t∏
t′=1

ast′−1st′Pθ(xt′ |st′)

α∗t (i) , max
s1...st−1

t∏
t′=1

ast′−1st′Pθ(xt′ |st′

4

This leads to a very natural algorithm, called the Viterbi algorithm, to find the most likely
hidden states. First, we let α∗0(i) = 1{i = Start} and then calculate:

α∗t (i) = max
j
α∗t−1(j)ajiPθ(xt|st = i)

Then we can calculate a decoding as:

max
s1...sT

Pθ(s1 . . . sT , x1 . . . xT) = max
i∈End

α∗T (i)

We can think of this as a backtracking: from each state/time-step combination, we have
a maximum probability over prior state/time-step combinations. By following this most
likely path backwards, we can construct the most likely set of hidden states. A diagram of
this is on slide 23.

Learning

We have a set of observations for something we’d like to model, which are of the form
X = x1 . . . xT . Learning would be easy if we knew what states to associate with each
observation S = s1 . . . sT . Since we don’t (they’re “hidden” in the model), we’ll have to do
something else.

We’ll use expectation maximization to find the right decomposition of the likelihood
that we can learn. We already know how to, given X, guess a distribution Q(S|X) using
the decoding algorithm we saw above. Now, regardless of Q, we know:

logL(θ) = L(Q, θ) +D(Q, θ)

where:

L(Q, θ) =
∑
s1...sT

Q(S|X) log
Pθ(S)Pθ(X|S)

Q(S|X)

D(Q, θ) =
∑
s1...sT

Q(S|X) log
Q(S|X)
Pθ(S|X)

The first of these is easy to maximize. The second is a Kullback-Leibler divergence, which
we’ve seen before as information gain.

Let’s see how we get there. First:

L(Q, θ) =
∑
s1...sT

Q(S|X) log
Pθ(S)Pθ(X|S)

Q(S|X)

=
∑
s1...sT

Q(S|X)

[∑
t

log ast−1st +
∑
t

logPθ(xt|st)− logQ(S|X)

]

Now, the aij are probabilities so
∑

j aij = 1. This means that at the optimum, we have the
following relation:

∂L
∂aij

=
∑

+s1 . . . sTQ(S|X)
∑
t

1{st−1 = i}1{st = j}
aij

= Ki

5

and this implies:

aij ∝
∑
s1...sT

Q(S|X)
T∑
t=1

1{st−1 = i}1{st = j}

∝
T∑
t=1

∑
s1...sT

Q(S|X)1{st−1 = i}1{st = j}

∝
T∑
t=1

Q(st−1 = i, st = j|x1 . . . xT)

∝
T∑
t−1

Q(st−1 = i, st = j, x1 . . . xT)

∝
T∑
t−1

Q(x1 . . . xt−1, st−1 = i)︸ ︷︷ ︸
αt−1(j)

Q(st = j|st−1 = i, · · ·)︸ ︷︷ ︸
aij


Q(xt|st = j, · · ·)︸ ︷︷ ︸

Pθ(xt|st)

Q(xt+1 . . . xT |st = j, · · ·)︸ ︷︷ ︸
βt(i)


To compute this, we do not need to store Q(S|X), which would be too expensive. Instead,
we only need to store αt(s), βt(s) and the number Bt(s) , Pθ(xt|st = s) for all t and s.
And this is tractable, being about the size of the model times the number of time steps in
its longest path.

This yields an efficient algorithm for learning, similar to the forward algorithm from
before. It works like this:

• E-Step. Here we have 3 separate steps

1. Emission: ∀t∀i Bt(i) = Pθ(xt|st = i)

2. Forward Pass: This is the same as our earlier forward algorithm. Initialize
α0(i) = 1{i = Start} and then calculate for t = 1 . . . T :

∀i αt(i) =
∑
j

αt−1(j)aijBt(i)

3. Backward Pass: This is exactly analogous to the step above and the forward
algorithm from before. We initialize βT (i) = 1{i ∈ End} and then calculate for
t = T . . . 1:

∀i βt−1(i) =
∑
j

βt(j)aijBt(j)

• M-Step. In this step, we use the following Baum-Welch formulas:

– For a continuous HMM:

aij ←
∑

t αt−1(i)aijBt(j)βt(j)∑
t αt−1(i)βt−1(i)

µi ←
∑

t αt−1(i)βt−1(i)xt∑
t αt−1(i)βt−1(i)

Σi ←
∑

t αt−1(i)βt−1(i)xtx>t∑
t αt−1(i)βt−1(i)

− µiµ>i

6

– For a discrete HMM:

aij ←
∑

t αt−1(i)aijBt(j)βt(j)∑
t αt−1(i)βt−1(i)

bcs ←
∑

t αt−1(i)βt−1(i)1{xt ∈ Xc}∑
t αt−1(i)βt−1(i)

Segmentation and Recognition

Slides 33 - 38. Assume you have an observation sequence X = x1, x2, . . . , xT and a set of
categories C. The recognition problem is to assign the most likely category c ∈ C to X.

To solve the problem, train a model Wc for each category c ∈ C on the set of training
observation sequences using the Baum-Welch algorithm. Then, build a prior probability
distribution P (C = c). Using Bayes’ rule, we know that

P (C|x1, x2, . . . , xT) =
P (X|C)P (C)

P (X)

so we can use the forward algorithm to evaluate

arg max
c
Pθ(x1, x2, . . . , xT |Wc)

This expression gives us the category c that maximizes the probability of the observation
sequence x1, x2, . . . , xT in model Wc.

It’s also possible to perform segmentation and recognition at the same time. More
formally, the problem is to split a sequence X into segments and simultaneously assign a
category c ∈ C to each segment. One way to solve this problem is to build models for
each category c and combine them into a “supermodel” that can then be trained using the
forward-backward algorithm. Finite state transducers provide a more general solution to
this problem of combining models.

Note on n-gram language models. n−gram language models model the probability
of an emission sequence X = x1, . . . , xm−1, xm as the product of the probabilities of the
n−length subsequences of X. For example, the probability of the sequence x, y, z in a
bigram model would be

P (x|empty)P (y|x)P (z|y).

These probabilities can be computed from frequency data. n−gram language models
are often used to build the prior probability distributions used to train HMMs.

References

[1] LR Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

7

