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Sequential data

Data often comes as sequences

– Speech and signal.

– Biological sequences.

– Textual data.

Tasks

Recognition

– From speech signal to sequence of words.

– From sequence of words to sequence of ideas.

Segmentation

– Locate the beginning and the end of a subsequence.

Time invariance

– Words sound the same over time.

– Both tasks are intimately connected.
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Hidden Markov Models
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Hidden Markov Models for Civilians

• • • •
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Summary

– Speech recognition basics

– Hidden Markov Models

– Segmentation and recognition
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I. Speech recognition basics
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Sampling Waveforms

Sound is made of pressure variations.

Léon Bottou 7/38 COS 424 – 4/13/2010



Digital waveforms

Digital speech waveform ≈ one number every 100 µsec.
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Mel scaled filter bank

Preprocessing inspired by the human ear

�������

�������

������

	
	
	

�������

������


�
 ���������


�
 ���������


�
 ���������


�
 ���������


�
 ���������

	
	
	 	
	
	

������� ��������
���������
���������
������� ��

�������

!�"��#��

Resulting data

– Additional processing is common: MFCC, Delta encoding,. . .

– One vector xt with 16 to 48 coefficients every 5 to 20 ms.
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Spectrogram

”Laughter can soothe and heal.”

Léon Bottou 10/38 COS 424 – 4/13/2010



Coarticulation

“Heal”

Moving the mouth takes time.

– “h” shows the traces of the voiced “and”.

– “i” formants prepare the following “l”.

The sounds are all mixed.

Phoneme boundaries are an illusion!

Our brain reconstructs the phonemes.

But there is a clear sequential structure.
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II. Hidden Markov Models
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Generative word model

Markov state machine
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Transition probabilities
– Markov assumption: st depends only on st−1.

– Invariance assumption: Pθ(st | st−1)
∆
= ast,st−1 does not depend on t.

Emission probabilities
– Independence assumption: xt depends only st (and sometimes st−1)

– Continuous HMM: Pθ(xt | st = s) is N (µs,Σs).

– Discrete HMM: Pθ(xt ∈ Xc | st = s)
∆
= bcs with Xc defined by clustering.
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The Ferguson problems

Likelihood
– Given a specific HMM,

compute the likelihood of an observation sequence.

Pθ(x1 . . . xT ) =
∑
s1...sT

Pθ(x1 . . . xT , s1 . . . sT )

Decoding
– Given an observation sequence and an HMM,

discover the most probable hidden state sequence.

arg max
s1...sT

Pθ(s1 . . . sT |x1 . . . xT ) = arg max
s1...sT

Pθ(s1 . . . sT , x1 . . . xT )

Learning
– Given an observation sequence, learn the HMM parameters.
– Like a mixture: learning would be easy if we knew s1 . . . sT .

max
θ

∑
s1...sT

Pθ(s1 . . . sT )Pθ(x1 . . . xT | s1 . . . sT )
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Computing the likelihood

Exponential cost?

– The number of terms to sum grows exponentially with T .

L(θ)
∆
= Pθ(x1 . . . xT ) =

∑
s1...sT

Pθ(x1 . . . xT , s1 . . . sT )

=
∑
s1...sT

T∏
t=1

ast−1st Pθ(xt|st)

– The sum runs over sequences s1 . . . sT where sT ∈ End.
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Factoring the likelihood (1)

∀t L(θ)
∆
= Pθ(x1 . . . xT ) =

∑
i

Pθ(x1 . . . xT , st= i)

=
∑
i

Pθ(x1 . . . xt, st= i)Pθ(xt+1 . . . xT |x1 . . . xt , st= i)

=
∑
i

Pθ(x1 . . . xt, st= i)︸ ︷︷ ︸
∆
= αt(i)

Pθ(xt+1 . . . xT | st= i)︸ ︷︷ ︸
∆
= βt(i)

We have used the probabilistic relations

P (A) =
∑
B P (A,B) , P (A,B) = P (A)P (B |A),

and the independence assumptions.
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Factoring the likelihood (1bis)

Equivalent derivation:

L(θ)
∆
= Pθ(x1 . . . xT ) =

∑
s1...sT

T∏
t=1

ast−1st Pθ(xt|st)

=
∑
st

∑
s1...st−1

t∏
t′=1

ast′−1st′ Pθ(xt′|st′)︸ ︷︷ ︸
∆
= αt(st)

×
∑

st+1...sT

T∏
t′=t+1

ast′−1st′ Pθ(xt′|st′)︸ ︷︷ ︸
∆
= βt(st)

We have only used the arithmetic relations: AB + AC = A(B + C)
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Factoring the likelihood (2)

αt(st) = Pθ(x1 . . . xt, st)

=
∑
st−1

Pθ(x1 . . . xt, st, st−1)

=
∑
st−1

Pθ(x1 . . . xt−1, st−1)

× Pθ(st |x1 . . . xt−1, st−1)

× Pθ(xt |x1 . . . xt−1, st−1, st)

=
∑
st−1

αt−1(st−1) ast−1st Pθ(xt|st)

We have used the probabilistic relations
P (A) =

∑
B P (A,B) , P (A,B,C) = P (A)P (B |A)P (C |A,B)

and the independence assumptions.
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Factoring the likelihood (2bis)

Equivalent derivation:

αt(st) =
∑

s1...st−1

t∏
t′=1

ast′−1st′ Pθ(xt′ | st′)

=
∑
st−1

Pθ(xt|st) ast−1st

∑
s1...st−2

t−1∏
t′=1

ast′−1st′ Pθ(xt′ | st′)

=
∑
st−1

αt−1(st−1) ast−1st Pθ(xt|st)

We have only used the arithmetic relations: AB + AC = A(B + C)
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Factoring the likelihood (3)

βt−1(st−1) = Pθ(xt . . . xT | st−1)

=
∑
st

Pθ(xt . . . xT | st−1, st) Pθ(st | st−1)

=
∑
st

Pθ(xt+1 . . . xT | st−1, st)

× Pθ(xt |xt+1 . . . xT , st−1, st) Pθ(st | st−1)

=
∑
st

βt(st) ast−1st Pθ(xt|st)

Also derivable arithmetically.

Also with the chain rule:
∂L

∂αt−1
= βt−1 =

(
∂L

∂αt

)>( ∂αt
∂αt−1

)
= β>t

∂αt
∂αt−1

.
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Forward algorithm

Forward pass

αo(i) = 1I{i = Start}

αt(i) =
∑
j

αt−1(j) aji Pθ(xt|st= i)

Likelihood

βT (i) = 1I{i ∈ End}

Pθ(x1 . . . xT ) =
∑
i

αT (i) βT (i) =
∑
i∈End

αT (i)
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Decoding

Forward works because AB + AC = A(B + C).

But we also have max(AB,AC) = Amax(B,C) when A,B,C ≥ 0.

αt(i)
∆
=

∑
s1...st−1

t∏
t′=1

ast′−1st′ Pθ(xt′ | st′)

α?t (i)
∆
= max

s1...st−1

t∏
t′=1

ast′−1st′ Pθ(xt′ | st′)

Viterbi algorithm

α?o(i) = 1I{i = Start}

α?t (i) = max
j
α?t−1(j) aji Pθ(xt|st= i)

max
s1...sT

Pθ(s1 . . . sT , x1 . . . xT ) = max
i∈End

α?T (i)

Léon Bottou 22/38 COS 424 – 4/13/2010



Viterbi Algorithm

Viterbi algorithm

α?o(i) = 1I{i = Start}

α?t (i) = max
j
α?t−1(j) aji Pθ(xt|st= i)

max
s1...sT

Pθ(s1 . . . sT , x1 . . . xT ) = max
i∈End

α?T (i)

Viterbi backtracking
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Learning

Expectation Maximization

– We only observe the X = x1 . . . xT .

– Learning would be easy if we knew S = s1 . . . sT .

Decomposition

– For a given X, guess a distribution Q(S|X).

– Regardless of our guess, logL(θ) = L(Q, θ) +D(Q, θ)

L(Q, θ) =
∑
s1...sT

Q(S |X) log
Pθ(S) Pθ(X |S)

Q(S |X)
Easy to maximize

D(Q, θ) =
∑
s1...sT

Q(S |X) log
Q(S |X)

Pθ(S |X)
KL divergence
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Expectation Maximization
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E-Step: Q(S |X) ∝ Pθ(S, X) Memory?

M-Step: aij ∝
∑
S Q(S|X) CountS[i→ j] Computation?

µi =
∑
S Q(S|X) Avg[xt where st = i]

Σi =
∑
S Q(S|X) Avg[(xt − µi)(xt − µi)> where st = i]
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A closer look at the derivations (1)

L(Q, θ) =
∑
s1...sT

Q(S |X) log
Pθ(S) Pθ(X |S)

Q(S |X)

=
∑
s1...sT

Q(S |X)

[∑
t

log ast−1st +
∑
t

logPθ(xt|st)− logQ(S|X)

]

Since
∑
j

aij = 1, the following relation holds at the optimum:

∂L
∂aij

=
∑
s1...sT

Q(S |X)
∑
t

1I{st−1 = i} 1I{st=j}
aij

= Ki

Therefore

aij ∝
∑
s1...sT

Q(S |X)

T∑
t=1

1I{st−1 = i} 1I{st=j}
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A closer look at the derivations (2)

aij ∝
T∑
t=1

∑
s1...sT

Q(S |X) 1I{st−1 = i} 1I{st=j}

∝
T∑
t=1

Q(st−1 = i, st=j |x1 . . . xT ) ∝
T∑
t=1

Q(st−1 = i, st=j, x1 . . . xT )

∝
T∑
t=1

Q(x1 . . . xt−1, st−1 = i)︸ ︷︷ ︸
αt−1(j)

Q(st = j | st−1 = i, · · ·)︸ ︷︷ ︸
aij

× Q(xt | st=j, · · ·)︸ ︷︷ ︸
Pθ(xt|st)

Q(xt+1 . . . xT | st=j, · · ·)︸ ︷︷ ︸
βt(i)

We do not need to store Q(S|X)

We only need to store αt(s), βt(s), and Bt(s) = Pθ(xt|st=s) for all t and s.
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Forward backward algorithm

E-Step

Emission: ∀t ∀i Bt(i) = Pθ(xt|st= i)
Forward pass: αo(i) = 1I{i = Start}

for t = 1 . . . T , ∀i αt(i) =
∑
j αt−1(j) aji Bt(i)

Backward pass: βT (i) = 1I{i ∈ End}
for t = T . . . 1, ∀i βt−1(i) =

∑
j βt(j) aij Bt(j)

M-Step:

Baum-Welch formulas for continuous HMM.

aij ←
∑
t αt−1(i) aij Bt(j) βt(j)∑

t αt−1(i) βt−1(i)

µi ←
∑
t αt−1(i) βt−1(i) xt∑
t αt−1(i) βt−1(i)

Σi ←
∑
t αt−1(i) βt−1(i) xt x

>
t∑

t αt−1(i) βt−1(i)
− µi µ>i
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Forward backward algorithm

E-Step

Emission: ∀t ∀i Bt(i) = Pθ(xt|st= i)
Forward pass: αo(i) = 1I{i = Start}

for t = 1 . . . T , ∀i αt(i) =
∑
j αt−1(j) aji Bt(i)

Backward pass: βT (i) = 1I{i ∈ End}
for t = T . . . 1, ∀i βt−1(i) =

∑
j βt(j) aij Bt(j)

M-Step:

Baum-Welch formulas for discrete HMM.

aij ←
∑
t αt−1(i) aij Bt(j) βt(j)∑

t αt−1(i) βt−1(i)

bcs ←
∑
t αt−1(i) βt−1(i) 1I{xt ∈ Xc}∑

t αt−1(i) βt−1(i)
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The Ferguson problems

Likelihood

– Given a specific HMM,

compute the likelihood of an observation sequence.

=⇒ Forward algorithm

Decoding

– Given an observation sequence and an HMM,

discover the most probable hidden state sequence.

=⇒ Viterbi algorithm

Learning

– Given an observation sequence, learn the HMM parameters.

=⇒ Forward-Backward algorithm
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III. Segmentation and Recognition
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Recognition only

Problem
– Classify sequence X as one of the categories c ∈ C.
– Example: isolated word recognition.

Training
– Train HMM model Wc for each sequence category c.
– To train with multiple sequences for each category,

accumulate numerator and denominator in the Baum-Welch formulas.

Prior probabilities
– Determine prior probabilities P (C=c) for all categories.

Recognition

– Bayes rule says P (C|x1 . . . xT ) =
P (X|C) P (C)

P (X)
.

– Therefore return category arg max
c

Pθ(x1 . . . xT |Wc)

as computed using the forward algorithm in model Wc.

Léon Bottou 32/38 COS 424 – 4/13/2010



Simultaneous recognition and segmentation

Problem

– Split sequence X into segments belonging to categories c ∈ C.

– Example: continuous speech recognition.

Training the HMM

– Train HMM model Wc for each sequence category c.

Prior probabilities

– Prepare a bigram language model for sequences of categories.

Determine P (ct+1 | ct) using adequate data.
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Simultaneous recognition and segmentation

Construct a super model
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Simultaneous recognition and segmentation

Run Viterbi on the super model

No coarticulation modelling yet.
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Training with unsegmented data

Problem

– Segmenting the training data is labor intensive

– Assume we have sequence of labels c1 . . . cS without segmentation.

Construct sequence model

– Concatenate models Wc1 . . .WcS
– Run forward-backward algorithm.
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Dealing with coarticulation

Problem

– Transitions between categories need specific modelling.

Solution

– Develop more refined ways to combine models
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Léon Bottou 37/38 COS 424 – 4/13/2010



Using more complex language models

Problem

– Bigram language models are rarely good enough.

Solution

– Develop more refined ways to combine models.

Finite state transducers

– A generic method to combine models

– We’ll see them in a couple lectures.
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