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Sequential data

Data often comes as sequences
— Speech and signal.
— Biological sequences.
— Textual data.

Tasks
Recognition
— From speech signal to sequence of words.
— From sequence of words to sequence of ideas.
Segmentation
— Locate the beginning and the end of a subsequence.

Time invariance
— Words sound the same over time.
— Both tasks are intimately connected.
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Hidden Markov Models for Civilians

A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition

LAWRENCE R. RABINER, FELLOW, IEEE

Although initially introduced and studied in the late 19605 and
early 1970s, statistical methods of Markov source or hidden Markov
modeling have become increasingly popular in the last several
years. There are two strong reasons why this has occurred. First the
models are very rich in mathematical structure and hence can form
the theoretical basis for use in a wide range of applications. Sec-
ond the models, when applied properly, work very well in practice
far several important applications. In this paper we attempt to care-
fully and methodically review the theoretical aspects of this type

In this case, with a good signal model, we can simulate the
source and learn as much as possible via simulations.
Finally, the most important reason why signal models are
important is that they often work extremely well in practice,
and enable us to realize important practical systems—e.g.,
prediction systems, recognition systems, identification sys-
tems, etc., in a very efficient manner.
i
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"The idea of characterizing the theoretical aspects of hidden
Markov modeling in terms of solving three fundamental problems
is due to Jack Ferguson of IDA (Institute for Defense Analysis) who
introduced it in lectures and writing.

The author gratefully acknowledges the major contri-
butions of several colleagues to the theory of HMMs in gen-
eral, and to the presentation of this paper, in particular. A
great debt is owed to Dr. ], Ferguson, Dr. A. Paritz, Dr. L.
Liporace, Dr. A.Richter, and to Dr. F. Jelinek and the various
members of the IBM group forintroducing the speech world
to the ideas behind HMMs. In addition Dr. S. Levinson, Dr.
M. Sondhi, Dr. F. Juang, Dr. A. Dembo, and Dr. Y. Ephraim
have contributed significantly to both the theory of HMMs
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Summary

— Speech recognition basics
— Hidden Markov Models

— Segmentation and recognition
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I. Speech recognition basics
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Sampling Waveforms

Sound is made of pressure variations.
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Digital waveforms

Digital speech waveform ~ one number every 100 usec.
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Mel scaled filter bank

Preprocessing inspired by the human ear

~» 10-20Hz —— » || — » subsample »

~—» 20-30Hz ——» |x| —» subsample —»
1@10kHZ —» 30-50Hz —» |z| —» subsample —» 32@100HZ
P mel-scale
waveform . . . frequency
amplitudes

1-2kHz ——» || —» subsample

>
> 24kHz | ® |z — » subsample

‘>
‘>

Resulting data
— Additional processing is common: MFCC, Delta encoding,. ..
— One vector x; with 16 to 48 coefficients every 5 to 20 ms.
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Spectrogram
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"Laughter can soothe and heal.”
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Coarticulation

Moving the mouth takes time.

— “h"” shows the traces of the voiced “and".
— " formants prepare the following “I".

The sounds are all mixed.
Phoneme boundaries are an illusion!
Our brain reconstructs the phonemes.

But there is a clear sequential structure.
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II. Hidden Markov Models
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Generative word model

Markov state machine

B

Transition probabilities

— Markov assumption: s; depends only on s;_j.
. : A
— Invariance assumption: FPy(s;|s;—1) = as,.s,; does not depend on t.

Emission probabilities
— Independence assumption: z; depends only st (and sometimes s, ;)

— Continuous HMM: Py(zy | sy = s) is N (s, Xg).
— Discrete HMM: FPy(x; € X, | st = s) = b.s with X. defined by clustering.
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The Ferguson problems

Likelihood
— Given a specific HMM,
compute the likelihood of an observation sequence.

Py(xy...xp) = Z Py(xy...xp, 81...8T)

Decoding
— Given an observation sequence and an HMM,
discover the most probable hidden state sequence.

argmax Py(sy...sp|x1...xp) = argmax Py(sy...s7, 1...27)
S1...5T S1...5T

Learning
— Given an observation sequence, learn the HMM parameters.

— Like a mixture: learning would be easy if we knew sj...s7.

max Z Pg . ST Pg(ﬂ?l LT | S1... ST)

S1---ST
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Computing the likelihood

Exponential cost?

— The number of terms to sum grows exponentially with 7.

A
L(0)= Py(xy...zp) = Z Py(xy...x7, S1...8T)
S1...8T

T
- Z HaSt—1St BPy(x¢|st)

— The sum runs over sequences si...sp Where sp € End.
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Factoring the likelihood (1)

Vit L(0)= Py(xy...xp) = ZP@(iEl LT, SE=1)
— ZPg(xl...a:t, St:i> P9<xt+1...£€T|J}1...£€t, St:i>

— ZP@(LEl oo It St:i) P(9<33t+1 . --xT’5t2i>

We have used the probabilistic relations
P(A) = ZB P(A,B), P(A,B)=P(A)P(B|A),
and the independence assumptions.

Léon Bottou 16/38 COS 424 — 4/13/2010



Factoring the likelihood (1bis)

Equivalent derivation:

A
L(@) — Pg(:ljl .. .:IjT> — Z Hast 1S¢ Pg ZUt|St>

S1...8T t=1
— Z Z H a’St/ St/ P@ xt/‘St/)
S1--5t—1 t'=
A TV
= ay(st)
T

X Z H as,_ sy Polzylsy)

St41---5T t'=t+1

7

"

2 Bi(sy)

We have only used the arithmetic relations: AB + AC = A(B + C)
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Factoring the likelihood (2)

Ozt<8t) — P@(CCl ..oty St>

= > Pylar...wg, st 5-1)

St—1

— Z P9<x1 s Lt—1, St—l)

St—1
x Py(st|ar... 201, 5¢-1)

X Pp(ze|awy.. w1, 51, 5t)

= > op1(si—1) as,_ys, Polwes)

St—1

We have used the probabilistic relations
P(A) = ZB P(A,B), P(A,B,C)=PA)P(B|A)P(C|A,B)
and the independence assumptions.
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Factoring the likelihood (2bis)

Equivalent derivation:

t
ag(st) = Z H Asy_ 184 Pyl | sp)

S1--5t-1 /=1

= Z PQ ajt‘st a’St 1St Z Hast, St/ P@ xt/|8t/)

St—1 S$1---St—2 /=

= Y op1(si—1) as,_ys, Polwe|s)

St—1

We have only used the arithmetic relations: AB + AC = A(B + C)
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Factoring the likelihood (3)

Ot-1lst—1) = Fplar ... o7 |s1-1)
= Z Py(xy ...z | St—1, St) Py(s¢ | St—1)
St

= Z PQ(ZCt_|_1 ... I ‘ St—1, St)
St

X Py(we| i1 o, 501, st) Py(st] si-1)

- Z Bi(st) as;_1s Pplwe|st)
St

Also derivable arithmetically.

-
Also with the chain rule: oL = Bi_1 = 8—L Jay = ﬁt—r Jai :
0 ath_l (90415_1
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Forward algorithm

Forward pass
ay(i) = 1{i = Start}

#(1) Zatl ) aj; Po(xt|s=1)

Likelihood

Br(i) = 1{i € End)}

Py(xy .. o) = Z@T(i) Br(i) = > apli)

1€End
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Decoding

Forward works because AB + AC = A(B + ().
But we also have max(AB, AC) = Amax(B,C) when A, B,C > 0.

t
N A
ar(i) = > [ asy sy Palay|sp)
S1.St—1 =1
N t
ay(i) = max H (s, sy Pplzy|sy)

S1.--St—1 )
t'=1

Viterbi algorithm
ay(i) = 1{i = Start}

af (i) = max o _1(J) aji Pplxi|sp=1)

max Py(s1...87.,x1...2 —  max a(1
Jnax 9(s1...57, T1...27) max ()
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Viterbi Algorithm

Viterbi algorithm
ap(i) = T{i = Start}

of (i) = max o _1(J) aji Pplxi]sy=1)

max Py(s1...87.,x1...2 —  max a(i
Jnax 9(S1...S7, T1...27) ax. ()

Viterbi backtracking

Y Y ¥ AN |
+ | ? ST T © ‘ |
\ |
g \o
5o B X
NN VRN N\
X
\ \
t=1 t=T
Léon Bottou 23/38 COS 424 — 4/13/2010



Learning

Expectation Maximization
— We only observe the X =x7...27.
— Learning would be easy if we knew S = s;...5s7.

Decomposition
— For a given X, guess a distribution Q(S5|X).

— Regardless of our guess, log L(0) = L(Q,0) + D(Q, 0)

L£(Q,0) = Z QS| X)log P9<g><§9‘<j((>|s) Easy to maximize

S1...8T
D(Q,0) = S;TQ(S\X) log ]i29<<§‘|§>) KL divergence
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Expectation Maximization

log L
D 20 ‘
£\

log L log L =——
D D=0 [/
L L L

2. Change 6 to maximize L. Meanwhile D can only increase.

1. Change Q to minimize D leaving log L unchanged.

E-Step: QS| X) x Py(S, X) Memory?

M-Step: a;; x ) ¢ Q(S|X) Countgli — j Computation?
i =g Q(S|X) Avglz; where s; =i
5i =5 QUS|X) Avgl(wy — i) (zy — p;) " where sy = i]
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A closer look at the derivations (1)

Py(S) Py(X | S)

£Q.0) = > Q(S|X)log

S1...8T Q<S|X)
= Y Qis|x) Zlogast 1St+zlogP9 zelsy) — log Q(S]X)
S1...8T

Since Zaii — 1, the following relation holds at the optimum:
J

- Y Qs|x) ZH{St_lzé}.H{St:j} _ K

8@23 o i
T herefore
T
aij o< Y QISIX) D M{s_1=i} I{s=5}
S1...ST i1
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A closer look at the derivations (2)

T
aij o< Y > QS|X) s =i} I{s;=j}

t=1 S1...8T

T T
x Y Qsp—1=i, sp=j|a1...op) o< Y Qlsy—1=1i, st=4j, x1...77)

t=1 t=1

T
o Y Qwy...wp1, sp—1=1) Qlst =j|si—1=0,- ")

tzl\ /A Y

ar—1(J) iy
X Qxe|st=7,- ) Q@1 ap|se=j,- )
Py(x¢|st) By (i)

We do not need to store Q(S5]X)
We only need to store ay(s), (i(s), and By(s) = Py(x|sy=s) for all ¢t and s.
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Forward backward algorithm

E-Step
Emission: Vt Vi B(i) = Pylx|st=1)
Forward pass: «,(i) = 1{: = Start}
fort=1...T, Vi oy(i) =) ;ou—1(J) aj; Bi(i)
Backward pass: Gp(i) = 1{i € End}
fort=T...1, Vi Bp1(i)=>_;5(j) aij Be(j)

M-Step:
Baum-Welch formulas for continuous HMM.
o 2 agg Bild) Bild)
Y >t —1(1) Bp—1(d)

2 ou—1(8) B (1) 3 el B w7
(@) A ) - > ai—1(2) Br—1(7) ada
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Forward backward algorithm

E-Step
Emission: Vt Vi B(i) = Pylx|st=1)
Forward pass: «,(i) = 1{: = Start}
fort=1...T, Vi oy(i) =) ;ou—1(J) aj; Bi(i)
Backward pass: Gp(i) = 1{i € End}
fort=T...1, Vi Bp1(i)=>_;5(j) aij Be(j)

M-Step:
Baum-Welch formulas for discrete HMM.
o 2 agg Bild) Bild)
Y > 1 ar—1(i) Bp—1(2)

" > ap—1(1) Br—1(i) Wy € X}
° >t or—1(8) Br—1(4)
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The Ferguson problems

Likelihood
— Given a specific HMM,

compute the likelihood of an observation sequence.
—> Forward algorithm

Decoding

— Given an observation sequence and an HMM,
discover the most probable hidden state sequence.

— Viterbi algorithm

Learning
— Given an observation sequence, learn the HMM parameters.

—> Forward-Backward algorithm
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III. Segmentation and Recognition
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Recognition only

Problem
— Classify sequence X as one of the categories ¢ € C.

— Example: isolated word recognition.

Training
— Train HMM model W, for each sequence category c.
— To train with multiple sequences for each category,
accumulate numerator and denominator in the Baum-Welch formulas.

Prior probabilities
— Determine prior probabilities P(C'=c¢) for all categories.

Recognition
P(X|C)P
— Bayes rule says P(Clzy...x7) = ( 1’3%() <O>.

— Therefore return category arg max Pg(x1 ...z | We)
C
as computed using the forward algorithm in model W..
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Simultaneous recognition and segmentation

Problem
— Split sequence X into segments belonging to categories ¢ € C.

— Example: continuous speech recognition.

Training the HMM
— Train HMM model W, for each sequence category c.

Prior probabilities
— Prepare a bigram language model for sequences of categories.

Determine P(c¢;1q|¢;) using adequate data.
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Simultaneous recognition and segmentation

Construct a super model

@7

>e

Léon Bottou 34/38 COS 424 — 4/13/2010



Simultaneous recognition and segmentation

Run Viterbi on the super model

Model 1 /d/ _\'\-

Model 2 /of o

/

Signal —

Y

No coarticulation modelling yet.
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Training with unsegmented data

Problem
— Segmenting the training data is labor intensive
— Assume we have sequence of labels ¢y ...cg without segmentation.

Construct sequence model
— Concatenate models W, ... W,,
— Run forward-backward algorithm.

WR ARG 8
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Dealing with coarticulation

Problem
— Transitions between categories need specific modelling.

Solution
— Develop more refined ways to combine models

/d—al y

ol

/dl
AN

ol k- o/ 4
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Using more complex language models

Problem
— Bigram language models are rarely good enough.

Solution
— Develop more refined ways to combine models.

Finite state transducers
— A generic method to combine models
— We'll see them in a couple lectures.
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