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Readings

• T. G. Dietterich (2000)

“Ensemble Methods in Machine Learning”.

• R. E. Schapire (2003):

“The Boosting Approach to Machine Learning”.

Sections 1,2,3,4,6.
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Summary

1. Why ensembles?

2. Combining outputs.

3. Constructing ensembles.

4. Boosting.
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I. Ensembles
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Ensemble of classifiers

Ensemble of classifiers

– Consider a set of classifiers h1, h2, . . . , hL.

– Construct a classifier by combining their individual decisions.

– For example by voting their outputs.

Accuracy

– The ensemble works if the classifiers have low error rates.

Diversity

– No gain if all classifiers make the same mistakes.

– What if classifiers make different mistakes?
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Uncorrelated classifiers

Assume ∀r 6= s Cov [ 1I{hr(x) = y} , 1I{hs(x) = y} ] = 0

The tally of classifier votes follows a binomial distribution.

Example
Twenty-one uncorrelated classifiers with 30% error rate.
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Statistical motivation

blue : classifiers that work well on the training set(s)
f : best classifier.
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Computational motivation

blue : classifier search may reach local optima
f : best classifier.
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Representational motivation

blue : classifier space may not contain best classifier
f : best classifier.
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Practical success

Recommendation system

– Netflix “movies you may like”.

– Customers sometimes rate movies they rent.

– Input: (movie, customer)

– Output: rating

Netflix competition

– 1M$ for the first team to do 10% better than their system.

Winner: BellKor team and friends

– Ensemble of more than 800 rating systems.

Runner-up: everybody else

– Ensemble of all the rating systems built by the other teams.
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Bayesian ensembles

Let D represent the training data.

Enumerating all the classifiers

P (y|x,D) =
∑
h

P (y, h|x,D)

=
∑
h

P (h|x,D) P (y|h, x,D)

=
∑
h

P (h|D) P (y|x, h)

P (h|D) : how well does h match the training data.

P (y|x, h) : what h predicts for pattern x.

Note that this is a weighted average.
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II. Combining Outputs
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Simple averaging
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Weighted averaging a priori
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Weights derived from the training errors, e.g. exp(−β TrainingError(ht)).
Approximate Bayesian ensemble.
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Weighted averaging with trained weights
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Train weights on the validation set.
Training weights on the training set overfits easily.
You need another validation set to estimate the performance!
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Stacked classifiers
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Second tier classifier trained on the validation set.

You need another validation set to estimate the performance!

Léon Bottou 16/33 COS 424 – 4/8/2010



III. Constructing Ensembles
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Diversification

Cause of the mistake Diversification strategy

Pattern was difficult. hopeless

Overfitting (?) vary the training sets

Some features were noisy vary the set of input features

Multiclass decisions were inconsistent vary the class encoding
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Manipulating the training examples

Bootstrap replication simulates training set selection

– Given a training set of size n, construct a new training set

by sampling n examples with replacement.

– About 30% of the examples are excluded.

Bagging

– Create bootstrap replicates of the training set.

– Build a decision tree for each replicate.

– Estimate tree performance using out-of-bootstrap data.

– Average the outputs of all decision trees.

Boosting

– See part IV.
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Manipulating the features

Random forests

– Construct decision trees on bootstrap replicas.

Restrict the node decisions to a small subset of features

picked randomly for each node.

– Do not prune the trees.

Estimate tree performance using out-of-bootstrap data.

Average the outputs of all decision trees.

Multiband speech recognition

– Filter speech to eliminate a random subset of the frequencies.

– Train speech recognizer on filtered data.

– Repeat and combine with a second tier classifier.

– Resulting recognizer is more robust to noise.
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Manipulating the output codes

Reducing multiclass problems to binary classification

– We have seen one versus all.

– We have seen all versus all.

Error correcting codes for multiclass problems

– Code the class numbers with an error correcting code.

– Construct a binary classifier for each bit of the code.

– Run the error correction algorithm on the binary classifier outputs.
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IV. Boosting
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Motivation

• Easy to come up with rough rules of thumb for classifying data

– email contains more than 50% capital letters.

– email contains expression “buy now”.

• Each alone isnt great, but better than random.

• Boosting converts rough rules of thumb into an accurate classier.

Boosting was invented by Prof. Schapire.
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Adaboost

Given examples (x1, y1) . . . (xn, yn) with yi = ±1.

Let D1(i) = 1/n for i = 1 . . . n.

For t = 1 . . . T do

• Run weak learner using examples with weights Dt.

• Get weak classifier ht
• Compute error: εt =

∑
iDt(i) 1I(ht(xi) 6= yi)

• Compute magic coefficient αt =
1

2
log

(
1− εt
εt

)
• Update weights Dt+1(i) =

Dt(i) e
−αt yi ht(xi)

Zt

Output the final classifier fT (x) = sign

 T∑
t=1

αtht(x)
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Toy example

Weak classifiers: vertical or horizontal half-planes.
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Adaboost round 1
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Adaboost round 2
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Adaboost round 3
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Adaboost final classifier

Léon Bottou 29/33 COS 424 – 4/8/2010



From weak learner to strong classifier (1)

Preliminary

DT+1(i) = D1(i)
e−α1 yi h1(xi)

Z1
· · · e

−αT yi hT (xi)

ZT
=

1

n

e−yi fT (xi)∏
tZt

Bounding the training error

1

n

∑
i

1I{fT (xi) 6= yi} ≤
1

n

∑
i

e−yi fT (xi) =
1

n

∑
i

DT+1(i)
∏
t

Zt =
∏
t

Zt

Idea: make Zt as small as possible.

Zt =

n∑
i=1

Dt(i)e
−αt yi ht(xi) = n (1− εt) e−αt + n εt e

αt

1. Pick ht to minimize εt.

2. Pick αt to minimize Zt.
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From weak learner to strong classifier (2)

Pick αt to minimize Zt (the magic coefficient)

∂Zt
∂αt

= −(1− εt) e−αt + εt e
αt = 0 =⇒ αt =

1

2
log

1− εt
εt

Weak learner assumption: γt = 1
2 − εt is positive and small.

Zt = (1− ε)
√

ε

1− ε
+ ε

√
1− ε
ε

=
√

4ε(1− ε) =
√

1− 4γ2
t ≤ exp

(
− 2γ2

t

)

TrainingError(fT ) ≤
T∏
t=1

Zt ≤ exp

−2

T∑
t=1

γ2
t


The training error decreases exponentially if inf γt > 0.

But that does not happen beyond a certain point. . .
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Boosting and exponential loss

Proofs are instructive

We obtain the bound

TrainingError(fT ) ≤ 1

n

∑
i

e−yiH(xi) =

T∏
t=1

Zt

– without saying how Dt relates to ht
– without using the value of αt

y y(x)^

Conclusion

– Round T chooses the hT and αT
that maximize the exponential loss reduction from fT−1 to fT .

Exercise

– Tweak Adaboost to minimize the log loss instead of the exp loss.
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Boosting and margins

marginH(x, y) =
y H(x)∑
t |αt|

=

∑
t αt y ht(x)∑

t |αt|

Remember support vector machines?
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